

The Arkansas Water Plan is the State's comprehensive planning process for the conservation, development, and protection of the State's water resources, with a goal of long-term sustainable use for the health, well-being, environmental, and economic benefit of the State of Arkansas.

This study, managed and executed by the Arkansas Natural Resources Commission under its authority to update the Arkansas Water Plan, was funded jointly through monies generously provided by the Arkansas Natural Resources Commission and Arkansas Game and Fish Commission.

HEALTH
WELL-BEHG
ENVIRONMENT
FOONOME

ANRC Commissioners

Corbet Lamkin - Chairman
David Feilke - Vice Chairman
Ann Cash
Don Richardson
Fred Fowlkes
Jerry Hunton
Mike Carter
James Neal Anderson
Sloan Hampton

ANRC Executive Director

J. Randy Young, P.E.

Acknowledgements

The ANRC gratefully acknowledges the planning and technical/engineering expertise provided by CDM Smith, FTN Associates, and the following agencies and specific individuals: Arkansas Game and Fish Commission (Mike Armstrong), Arkansas Department of Environmental Quality (Ellen Carpenter, Sarah Clem), Arkansas Department of Health (Teresa Lee), U.S. Geological Survey (Tim Kresse, Brian Clark), University of Arkansas Rice Research and Extension Center (Dr. Chris Henry) and other private, federal, and state partners in development of the 2014 AWP Update. Special thanks go out to Arkansas citizens who contributed their considerable time, intellect, and unique perspectives to the AWP process.

The ANRC would also like to thank those agency employees primarily responsible for the development and organization of the AWP, particularly Edward Swaim, Ken Brazil, Tony Ramick, Mark Bennett, Todd Fugitt, Lori Scott-Nakai, Nancy Gambill, and Crystal Phelps.

STATE OF ARKANSAS ARKANSAS NATURAL RESOURCES COMMISSION

The Honorable Mike Beebe, Governor Members of the Arkansas Legislature Citizens of Arkansas

The Arkansas Natural Resources Commission respectfully submits for your consideration this 2014 update of the Arkansas Water Plan. The Arkansas Water Plan is a long-term strategy to guide the use, management, development, and conservation of water for all citizens.

This update was developed with unparalleled citizen involvement and interagency coordination and was informed by expert technical analysis. The issues identified in the 2014 Arkansas Water Plan validate those issues that were identified in the 1990 Arkansas Water Plan. This update provides recommended actions for resolving the identified issues. For this update, the recommendations were proposed by voluntary citizen participants. The public support for water planning demonstrated by the Arkansas citizenry bodes well for the future support of the actions contained in this plan.

Demands for water are projected to 2050, as is the supply available from groundwater and surface water sources. Overall, Arkansas has sufficient water supply to meet the projected demands, although the water is not necessarily in the location or season that it is needed. The planning process has had a positive result of innovative suggestions to provide water where and when it is needed. The recovery of water levels in the Sparta Aquifer, in Union County, shows that the combination of conservation, water development projects, and infrastructure can effectively meet water demands and protect the water resources of Arkansas. The success of Union County points out the importance of completing the Grand Prairie, Bayou Meto and similar water development projects.

The importance of data and technical tools for understanding water demand and supply became clear in the 2014 AWP planning process. Additional data is critical to understanding the complexity and interaction of Arkansas water resources. Applying that knowledge to manage water is crucial to using our State's water resources effectively.

Public involvement has been a cornerstone of developing the Arkansas Water Plan and will continue during implementation. The Arkansas Natural Resources Commission appreciates your consideration and interest in ensuring that Arkansas's water needs are met for all users and keeping us the Natural State.

Corbet Lamkin – Chairman	David Feilke – Vice Chairman	Ann Cash
Don Richardson	Fred Fowlkes	Jerry Hunton
Mike Carter	James Neal Anderson	Sloan Hampton

Contents

Fo	rewor	d1			4.1.3 Bayou Meto Water Management	
1	Intro	oduction2			Project	
1	1.1	History of Water Planning in Arkansas2			4.1.4 Plum Bayou Project	34
	1.2	AWP Vision, Mission, and Goals3			4.1.5 Agricultural Water Conservation	34
	1.2	AVVI VISIOII, IVIISSIOII, AIIG GOAIS		4.2	2014 AWP Implementation	35
2	Key	Findings5			4.2.1 Stakeholder Involvement	35
	2.1	Demand Projections5			4.2.2 Scheduled AWP Updates	36
	2.2	Water Availability5			4.2.3 Public Education and Awareness	36
	2.3	Water Quality6	5	Gene	eral Description of the State	37
	2.4	Gap Analysis6	9	5.1	Physical Environment	
	2.5	Water and Wastewater Infrastructure6	•	J.1	5.1.1 Landforms and Geology	
					5.1.2 Climate	
3	Issue	es and Recommendations7			5.1.3 Ecology	
_	3.1	Conjunctive Water Management and		5.2	Hydrologic Environment	
	J.1	Groundwater Decline Priority Issue8		J. <u>Z</u>	5.2.1 Surface Water	
	3.2	Drought Contingency Response			5.2.2 Groundwater	
		Priority Issue10		5.3	Socioeconomic Environment	
	3.3	Excess Water for Nonriparian			5.3.1 Demographics	
		Withdrawal and Use Priority Issue12			5.3.2 Land Use	
	3.4	Funding Water Resources		5.4	Water Resources Management	
		Development Projects Priority Issue14			_	
	3.5	Improving Water Quality through	***		5.4.1 Legal Framework	46
		Nonpoint Source Management Priority	-A		5.4.2 Water Agency Authorities and	
		Issue			Missions	46
	3.6	Public Awareness and Education		-		40
		Priority Issue17	6		nework for Water Management	
	3.7	Public Water and Wastewater		6.1	Statewide Overview	48
		Infrastructure Priority Issue18			6.1.1 Water Demand Forecasts for the	40
	3.8	Reallocation of Water Storage in	W.A	9	AWP Update	
	4	Federal Reservoirs Priority Issue20			6.1.2 Surface Water Availability	
	3.9	Tax Incentives and Credits for			6.1.3 Groundwater Availability	
		Integrated Irrigation Water		6.2	6.1.4 Gap Analysis	62
		Conservation Priority Issue21		6.2	Regional Water Resource Planning	6.1
	3.10	Supporting Issue 1: Water Use			Areas	
		Reporting				
4	Impl	ementation32			6.2.2 North Arkansas WRPR6.2.3 West-central Arkansas WRPR	
	4.1	Implementation Progress			6.2.4 South-central Arkansas WRPR	
	1.1	4.1.1 Grand Prairie Area			6.2.5 Southwest Arkansas WRPR	
		Demonstration Project				
		4.1.2 Sparta Recovery in Union County33	7	Refe	rences	81
		2 Sparea receivery in Cinon Country33				

Append	lices		Sustainable Pumping Under Dry	
	pendix A - 2013 Arkansas Groundwater		Climatic Conditions	63
Apl	Protection and Management	6-8	East Arkansas WRPR Water	03
	Act	0-0	Demand by Region, including	
Ana	oendix B - Regional Water Resource		Thermoelectric Power Withdrawals	66
App		6-9		00
A	Planning Area Reports	0-9	East Arkansas WRPR Regional	67
	pendix C - Water Availability Report	6.10	Watershed Statistics	07
	pendix D - Aquifers of Arkansas Report	6-10	North Arkansas WRPR Water	
App	pendix E - Water Demand Forecast		Demand by Region, including	60
	Report	ć 11	Thermoelectric Power Withdrawals	65
	pendix F - Gap Analysis Report	6-11	North Arkansas WRPR Regional	
App	pendix G – Alternatives Analysis		Watershed Statistics	70
	Report	6-12	West-central Arkansas WRPR	
App	pendix H - Issues and		Water Demand by Region, including	
	Recommendations		Thermoelectric Power Withdrawals	72
	Technical Memo	6-13	West-central Arkansas WRPR	
App	pendix I - Compiled List of Issues from		Regional Watershed Statistics	73
	Issues and	6-14	South-central Arkansas WRPR	
	Recommendations		Water Demand by Region, including	
	Workgroup Meetings		Thermoelectric Power Withdrawals	75
Apı	pendix J - List of Stakeholder	6-15	South-central Arkansas WRPR	
	Involvement Activities		Regional Watershed Statistics	77
	Completed	6-16	Southwest Arkansas WRPR Water	
	_		Demand by Region, including	
Figures			Thermoelectric Power Withdrawals	79
1-1	Overlay of Water Resources	6-17	Southwest Arkansas WRPR	
	Planning Regions on Major Surface		Regional Watershed Statistics	80
	Water Basins3			
3-1	Operational Example of Conjunctive	Tables		
	Water Management9	3-1	Comparison of Issues and	
5-1	General Geology of Arkansas38		Recommendations in the 1990 AWP	
5-2	Surface Waters of Arkansas41		and the 2014 AWP	24
5-3	Aquifers of Arkansas44	3-2	Water and Wastewater	
6-1	AWP Water Demand Forecast by		Infrastructure Survey Results	18
	Sector for the Base Year53	5-1	Surface Water Resources in	
6-2	AWP Water Demand Forecast by		Arkansas	
	Sector for the Year 205053	5-2	Largest Reservoirs in Arkansas	42
6-3	Excess Surface Water Calculation	5-3	Water Agencies in the State of	
	Steps54		Arkansas	47
6-4	The MERAS Model Boundary with	6-1	AWP Water Demand Forecast in AFY	
	Respect to the Water Resource	6-2	Calculated Excess Surface Water	55
	Planning Regions	6-3	Summary of Water Use Sector	
6-5	Groundwater Use in Arkansas		Water Supply Needs	56
6-6	Decline in Water Levels between the	6-4	Summary of 2008 Impaired Waters	5 €
0-0	Base Period and 2050 for the Alluvial		in Arkansas	57
		6-5	East Arkansas WRPR Summary of	J
67	Aquifer 60	0.5	Surface Water Availability by Major	
6-7	2050 Groundwater Gap by Major		Basins	65
	Basin and Subbasin Assuming	6-6	East Arkansas WRPR Groundwater	0
		0-0	Availability (AFY)	65
			AVAHADIHLY (AFI)	

6-7	Impaired Waters in the East		6-19	West-central Arkansas WRPR
	Arkansas WRPR in 2008	65		Summary of 2050 Supply Gap b
6-8	East Arkansas WRPR Water			Major Basin Assuming Sustaina
	Demand by Region, including			Pumping Under Dry Climatic
	Thermoelectric Power Withdrawals			Conditions
	(AFY)	66	6-20	South-central Arkansas WRPR
6-9	East Arkansas WRPR Summary of			Summary of Surface Water
	2050 Supply Gap by Major Basin			Availability by Major Basin
	Assuming Sustainable Pumping		6-21	South-central Arkansas WRPR
	Under Dry Climatic Conditions	67		Groundwater Availability (AFY
6-10	North Arkansas WRPR Summary of		6-22	Impaired Waters in the South-
	Surface Water Availability by Major		A	central Arkansas WRPR in 200
	Basin	68	6-23	South-central Arkansas WRPR
6-11	North Arkansas WRPR			Water Demand by Region, inclu
	Groundwater Availability (AFY)	68		Thermoelectric Power Withdra
6-12	Impaired Waters in the North		6-24	South-central Arkansas WRPR
	Arkansas WRPR in 2008	69		Summary of 2050 Supply Gap b
6-13	North Arkansas WRPR Water			Major Basin Assuming Sustaina
	Demand by Region, including			Pumping Under Dry Climatic
	Thermoelectric Power Withdrawals	70		Conditions
6-14	North Arkansas WRPR Summary of		6-25	Southwest Arkansas WRPR
	2050 Supply Gap by Major Basin			Summary of Surface Water
	Assuming Sustainable Pumping		4	Availability by Major Basin
	Under Dry Climatic Conditions	70	6-26	Southwest Arkansas WRPR
6-15	West-central Arkansas WRPR			Groundwater Availability (AFY
	Summary of Surface Water	A	6-27	Impaired Waters in the Southw
	Availability by Major Basin	71		Arkansas WRPR in 2008
6-16	West-central Arkansas WRPR		6-28	Southwest Arkansas WRPR W
	Groundwater Availability (AFY)	71		Demand by Region, including
6-17	Impaired Waters in the West-			Thermoelectric Power Withdra
	central Arkansas WRPR in 2008	72	6-29	Southwest Arkansas WRPR
6-18	West-central Arkansas WRPR			Summary of 2050 Supply Gap b
	Water Demand by Region, including			Major Basin Assuming Sustaina
	Thermoelectric Power Withdrawals	73		Pumping Under Dry Climatic

	Summary of 2050 Supply Gap by
	Major Basin Assuming Sustainable
	Pumping Under Dry Climatic
	Conditions73
6-20	South-central Arkansas WRPR
	Summary of Surface Water
	Availability by Major Basin74
6-21	South-central Arkansas WRPR
	Groundwater Availability (AFY)74
6-22	Impaired Waters in the South-
	central Arkansas WRPR in 200875
6-23	South-central Arkansas WRPR
	Water Demand by Region, including
	Thermoelectric Power Withdrawals76
6-24	South-central Arkansas WRPR
	Summary of 2050 Supply Gap by
	Major Basin Assuming Sustainable
	Pumping Under Dry Climatic
	Conditions76
6-25	Southwest Arkansas WRPR
	Summary of Surface Water
#	Availability by Major Basin78
6-26	
	Groundwater Availability (AFY)78
6-27	Impaired Waters in the Southwest
	Arkansas WRPR in 200878
6-28	Southwest Arkansas WRPR Water
	Demand by Region, including
	Thermoelectric Power Withdrawals79
6-29	Southwest Arkansas WRPR
	Summary of 2050 Supply Gap by
	Major Basin Assuming Sustainable
	Pumping Under Dry Climatic
	Conditions79

Acronyms	
0.	

-10	711 y 1113			
	°F	degrees Fahrenheit	and	gallons per day
	ADEQ	Arkansas Department of	gpd	gallons per minute
		Environmental Quality	gpm I&R	Issues and Recommendations
	ADH	Arkansas Department of Health		
	AF	acre-feet	LCA	local cooperation agreement
	AFY	acre-feet per year	MERAS	Mississippi Embayment Regional
	AGFC	Arkansas Game and Fish	/ T	Aquifer Study
		Commission	mg/L	milligrams per liter
	AHTD	Arkansas State Highway and	mgd	million gallons per day
		Transportation	MWh	megawatt hour
	ANHC	Arkansas Natural Heritage	NASS	National Agricultural Statistics
		Commission		Services
	ANRC	Arkansas Natural Resource	NOAA	National Oceanic and Atmospheric
		Commission	NCDC	Administration National Climatic
	APCEC	Arkansas Pollution Control and		Data Center
	111 020	Ecology Commission	NPS	Nonpoint Source
	ASWCC	Arkansas Soil and Water	NRCS	Natural Resource Conservation
	110 1100	Conservation Commission		Service
	AWP	Arkansas Water Plan	NWIS	National Water Information
	BMP	Best Management Practices		System
	BOD	biochemical oxygen demand	State	State of Arkansas
	CAPS	County Agricultural Production	TDS	total dissolved solids
	CHIO	Survey	TSS	total suspended solids
	COA	Census of Agriculture	U of A	University of Arkansas
	CWA	Clean Water Act	UCWCB	Union County Water
	DO	dissolved oxygen		Conservation Board
	DOH	Department of Health	UPP	Union Power Partners
	DWINSA	Drinking Water Infrastructure	USACE	U.S. Army Corps of Engineers
	DWINSA	Needs Survey and Assessment	USDA	U.S. Department of Agriculture
	EIA	Energy Information Agency	USFS	U.S. Forest Service
	EPA	U.S. Environmental Protection	USGS	U.S. Geological Survey
	EPA		WIA	Workforce Investment Area
	CDADD	Agency	WRID	White River Irrigation District
	GPADP	Grand Prairie Area Demonstration	WRPR	Water Resource Planning Region
	1	Project	WUDBS	ANRC Water Use Databases
	gpcd	gallons per capita per day		

Foreword

Water is vital to the prosperity and health of Arkansas's people and their natural surroundings. As such, water must be managed in a sustainable manner to support local and state economies, protect public health and natural resources, and enhance the quality of life for all citizens by applying appropriate policies and best practices with limited regulation and preservation of private property rights.

Extensive public participation, interagency cooperation, and detailed technical evaluations were the hallmarks of this 2014 Update of the Arkansas Water Plan (AWP). The plan recognizes that while we continue to struggle with known water issues, the recommendations in this plan, when implemented, can meet the water demands of the citizens of the State of Arkansas (State) through 2050. We have identified five critical initiatives that are essential to securing Arkansas's water future—

- 1. Groundwater Declines: Critical groundwater areas in eastern Arkansas continue to experience declining groundwater levels and a groundwater gap as large as 7 million acre-feet per year (AFY) is projected for 2050. Adopting on-farm application efficiency and other conservation measures can reduce the magnitude of this projected groundwater gap; it will be necessary to develop infrastructure-based solutions to convert irrigated acres currently supplied by groundwater to surface water.
- 2. Insufficient Infrastructure: Arkansas needs to construct and maintain water and sewer systems that furnish safe, clean, and reliable water supplies for its citizens and communities. The State's future viability and growth, especially with respect to the State's smaller rural communities, is threatened by the failure to provide these basic services. Resolution of this problem will require the combined commitment and actions of citizens and elected officials who must identify creative financing solutions and take advantage of regional infrastructure opportunities and shared sources of supply.
- 3. Proactive Management: We have initiated proactive, systematic, and measured evaluation of existing water laws and procedures involving relevant agencies and

- appropriate stakeholders. The steps taken in this direction will help to maintain the stable and orderly use of water that is so critical to Arkansas's economic welfare and quality of life.
- 4. Regional Planning: Integral to the AWP was the recognition of regional issues and priorities identified by citizens, water users, and stakeholders. Statewide water planning will continue to provide the direction for water management. Engaging local citizens who are more in touch with their unique needs, challenges, and potential solutions is critical to regional water planning.
- officials and the agencies and entities associated with managing and protecting the State's water must be informed by quality information to justify extremely consequential and potentially costly decisions. Sound planning and decision-making regarding Arkansas's water resources requires data, information, and analysis of water uses and water availability. Acquiring this data means the expansion of the network of stream gages, monitoring wells, water quality monitoring sites, and improved information on water use as well as the tools necessary to quantify, manage, and allocate surface and groundwater resources confidently.

The 2014 AWP is the strategy for making meaningful progress on each of these initiatives as described in the priority issues and recommendations and their respective implementation plans.

J. Randy Young, P.E.

Arkansas Natural Resources Commission Executive Director

1 Introduction

Arkansas is a state of distinct regions, from the low lying areas along the eastern and southern edges of the State to the mountains above the fall line that adorn the western edge. The occupations of the people of Arkansas are similarly varied – crop production, livestock production, aquaculture, silviculture, mining, industry, tourism, and recreation. What binds the people and regions of Arkansas together is the need for water – for living and working. As the Natural State, the importance of clean water to support healthy ecosystems cannot be understated. Quite simply, water is crucially important for Arkansas. Water is the common denominator that underlies the quality of life and economic well-being of Arkansas.

Arkansas is a water-rich state. Surface water is abundant, with over 44 million acre-feet (AF) of water flowing through 9 major river basins every year (Figure 1-1). This amount of surface water alone would provide about 4 acre-feet per year (AFY) of water for every person in Arkansas. However, surface water supplies are subject to seasonal fluctuations so that supplies are frequently at their lowest when demand is the highest. In some areas of the State, groundwater supplies have been easy to access through shallow wells and have been a plentiful source of water. As a result of over the century of agricultural reliance on groundwater for crop irrigation, the water levels in these aquifers have been declining and our projections suggest that by 2050, there will be demand for about 7 million AFY of groundwater that cannot be met with groundwater supplies.

Despite the relative abundance of water, many citizens lack access to dependable water and wastewater services due to distance to supplies, insufficient infrastructure or storage, water quality constraints, and other limiting factors. A fundamental conclusion of this AWP is that investments in infrastructure, drinking water, wastewater service, and irrigation will be required to support growth and economic development for the next 40 years.

1.1 History of Water Planning in Arkansas

The Arkansas Natural Resource Commission (ANRC) (formerly the Arkansas Soil and Water Conservation Commission [ASWCC]) received statutory authority to begin work on the first Arkansas State Water Plan in 1969. Specific authority was given to the ANRC by Ark. Code Ann. Sec. 15-22-503 (Sec. 2 of Act 217 of 1969), as amended, to be the designated agency responsible for water resources planning at the State level. This section

mandated that the ANRC develop and engage in a comprehensive program called the AWP. An integral part of this program is the creation of a comprehensive master plan of sufficient detail to serve as the primary water policy document for the protection, development, and management of water resources in the State. The ANRC was required to publish the AWP under Ark. Code Ann. Sec. 15-22-504 (Sec. 2 of Act 555 of 1975). This section of the statute also requires the ANRC to update the AWP "when needed."

The first AWP was published in 1975. It included five appendices that addressed specific problems and needs in the State. As more data became available, the everchanging nature of water resource problems and potential solutions made it apparent that the planning process must be dynamic and that periodic revision of the plan was necessary for the ANRC to meet its planning responsibilities.

In 1985, the Arkansas General Assembly enacted Ark. Code Ann. Sec. 15-22-301 (Sec. 2 of Act 1051 of 1985), which broadened the ANRC's planning responsibilities to include: (1) an inventory of the State's water resources, including areas in which water use has or will become critical in the next 30 years; (2) the determination of the current needs and the projection of future needs of all water uses in the State; and (3) the determination of whether excess surface water exists that might be put to beneficial use.

In 1990, the ANRC published a major revision and update of the AWP, which included the new responsibilities for the AWP. Eight basin reports covering the entire State were prepared that inventoried the water resources of the basins, identified current and future water problems within the basins, and recommended the actions to mitigate the problems.

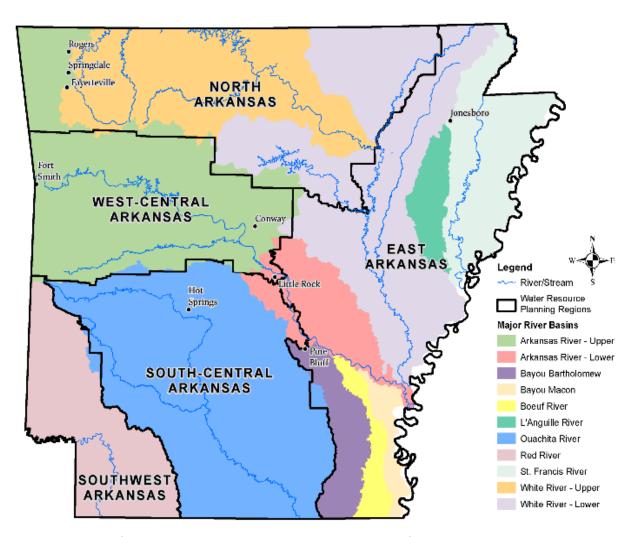


Figure 1-1. Overlay of Water Resources Planning Regions on Major Surface Water Basins

The 2014 AWP Update is the culmination of 2 years of data analysis and synthesis to understand the complexity of sources, available supply, and demand for water in Arkansas. The AWP is based on planning level projections of water demand and availability developed using consistent methodology on a statewide basis. The demand and availability analytical methodology was reviewed and concurred upon by stakeholder workgroups. The workgroups were created by inviting recognized experts throughout the State to assist in developing the 2014 AWP.

The State was divided into five water resource planning regions (WRPRs) comprised of areas with distinct geographic, topographic, ecologic, and sociologic characteristics (Figure 1-1).

Water-related issues were identified and prioritized by stakeholders in the planning regions of the State. This 2014 AWP Update is founded on the best available data, the knowledge and experience of a wide range of agency experts, and the critique of stakeholders and the public throughout the process.

1.2 AWP Vision, Mission, and Goals

An initial step in the AWP Update process was to develop a vision, mission, and goals to guide the development of the AWP. The vision, mission, and goals were drafted by the Technical Advisory Committee, which consisted of the nine ANRC Commissioners, senior management, and/or staff of key State and federal agencies. Public input on the draft vision, mission, and goals was requested at public meetings held in

November 2012 and June 2013. The final vision, mission, and goals for the AWP are described below.

Vision for Managing Water Resources in Arkansas

Water is vital to the prosperity and health of Arkansas's people and their natural surroundings. As such, water must be managed in a sustainable manner to support local and State economies, protect public health and natural resources, and enhance the quality of life of all citizens by applying appropriate policies and best management practices (BMPs) with limited regulation and preservation of private property rights.

Mission of the Arkansas Water Plan

The AWP is the State's comprehensive planning process for the conservation, development, and protection of the State's water resources, with a goal of long-term sustainable use for the health, well-being, environmental, and economic benefit of the State.

Arkansas Water Plan Goals

The AWP goals, as articulated by the Technical Advisory Committee, are:

- First and foremost, meet the drinking water needs of the State.
- Optimize the use of surface and groundwater for the differing economies of the unique regions of the State.
- Reliably meet agricultural water needs.
- Reliably meet industrial water needs.
- Manage water resources in a manner that protects the ecological needs of fish and wildlife.
- Reliably meet the water quantity and quality needs to help support navigation, recreation, and tourism.
- Use the best available science, data, tools, and technologies to support water resource decisions.
- Employ the latest supply management and water efficiency technologies among the different sectors of use including residential, commercial, industry, natural resources, and agriculture.
- Identify and address emerging water resource management needs as identified through the water planning process.
- Use best available science and data to update and implement the AWP, and identify and address data gaps and needs.

- Optimize existing water, wastewater, and flood control infrastructure, including identifying opportunities to cooperatively address regional water and wastewater needs.
- Maximize the current infrastructure reliability including dams, levees, and treatment and conveyance facilities.
- Plan for changing demographics and related infrastructure maintenance and operation implications.
- Improve and update existing infrastructure and address aging infrastructure.
- Sustainably use surface and groundwater sources for the multiple intrastate uses while complying with interstate compacts.
- Refine criteria for declaring drought, water shortages and excess water, and advance policies and procedures for allocating water during times of shortage or drought.
- Identify and recommend procedures and criteria to improve upon existing instream flow methodologies taking into consideration water quality, fish and wildlife needs, aquifer recharge, and navigation needs at the statewide and basin-specific level.
- Include recreation and tourism as nonconsumptive water uses.
- Identify opportunities to manage water, wastewater, and stormwater to improve the quantity and quality of water, while providing for wise land management, wetland, and riparian protection for fish and wildlife sustainability.
- Identify implementable water resources alternatives that are socially, fiscally, technically, and environmentally feasible to protect, enhance, and wisely use surface and groundwater.
- Identify and implement alternatives that are fair and equitable.
- Allow for adaptability with changing technology, water uses, and socioeconomic conditions.
- Provide education and open communication about the AWP and its implementation.
- Work cooperatively with other regions and states, and among agencies and entities responsible for stewardship of the State's natural resources.

Key Findings

The technical analyses completed for the 2014 AWP are described in detail in reports that are included as appendices to the AWP. These reports are: Water Availability (Appendix C), Demand Forecast (Appendix E), Gap Analysis (Appendix F), and Alternatives Analysis (Appendix G). A summary of the key findings from each of these reports are summarized here because they influence the issues, recommendations, and implementation steps described in the next section.

2.1 Demand Projections

- Statewide water demand is expected to increase 14 percent from the current 12 million AFY (11 billion gallons per day [gpd]) up to about 14 million AFY (12.5 billion gpd) by 2050.
- Overall, about 71 percent of statewide water demand is supplied from groundwater sources and that is assumed to remain the same through the 40-year planning horizon. Water demand for crop irrigation is about 80 percent of the total statewide water demand, primarily in the East Arkansas WRPR.
- One factor in estimating the projected demand for crop irrigation is the water application rate for each crop. While the best available data was used for the 2014 AWP analysis, stakeholder input suggests that the application rate, particularly for rice, is too high. The alternatives analysis (Appendix G) suggests that varying the application rate could decrease the crop irrigation water demand by about 1.3 million AFY.
- Livestock water demands are projected to increase approximately 9 percent to about 33,600 AFY in 2050. Future water demands for aquaculture are held constant at baseline period levels of 115,300 AFY for planning purposes.
- Industrial water demand (both municipallysupplied and self-supplied) are projected to decrease by 31 percent from 325,945 AFY in 2010 to 226,300 AFY in 2050. The decrease is attributed to projected decline in manufacturing employment.
- Mining water demand for silica sand, construction sand and gravel, and crushed stone mining are forecasted to increase by 132 percent from 6.825 AFY in 2010 to 15.658 AFY in 2050.
- Water demand for shale gas exploration and production is met with surface water. The demand for water for shale gas extraction in nine counties is projected to decrease by 26 percent from 11,680 AFY

- in 2010 to 8,395 AFY in 2026, depending on the price of gas and innovations in production technologies.
- Statewide municipal and self-supplied drinking water supply demand is projected to increase by about 25 percent from 462,500 AFY in 2010 to 578,000 AFY in 2050, assuming "passive conservation" (installation of low-flow toilets).
- Total surface water withdrawals for thermoelectric power production is projected to increase 15 percent from 1.3 million AFY in 2010 to 1.5 million AFY in 2050. However, the majority of water withdrawn for thermoelectric power production is returned, so the consumptive use is 0.09 million AFY in 2010 and is projected to increase to 0.1 million AFY in 2050.
- Water needed to maintain ecosystem viability is estimated using the Arkansas Method (Filipek et al. 1987) for the 2014 AWP¹. However, there is a recognized need to shift to using empirical, riskbased ecological response/flow relationships as the foundation for determining fish and wildlife flows in the future.
- Improved methodologies for estimating fish and wildlife flows, if adopted by ANRC, could be used to evaluate permits for nonriparian withdrawals, pre-allocation studies, and allocation in times of water shortages, as well as in future updates of the AWP.

2.2 Water Availability

• For the State of Arkansas, on an average annual basis, there is estimated to be 8.7 million AFY of excess surface water available for interbasin transfer or use by nonriparians. It is important to note that, although there is an abundance of water available

¹ S. Filipek, W.E. Keith, and J. Giese, *The Status of the Instream Flow* Issue in Arkansas, 1987 Proceedings Arkansas Academy of Science, 1987, pp. 43-48

- on an average annual basis, demands for that water do not necessarily occur during the times of year when that water is available in a stream.
- Groundwater modeling of the Mississippi Embayment aquifers (primarily the East Arkansas WRPR) suggests that, under sustainable pumping conditions, only about 20 percent of the groundwater demand can be met with groundwater in 2050. Groundwater availability in WRPRs outside the Mississippi Embayment model is assessed in the U.S. Geological Survey (USGS) report "Aquifers of Arkansas" (Kresse et al. in review). The general conclusions are that water supplies are limited by low yield and water quality concerns.

2.3 Water Quality

- Surface water quality assessments in 2008 showed that the quality of 41 percent of the assessed streams and 36 percent of the assessed lakes was not adequate to support the uses of the water. There is no statewide pattern of use impairment or causes of impairment, except fish consumption (mercury).
- In surface water, there have been declining trends in suspended solids across most WRPRs from 1990 to 2008.
- Groundwater quality in the Mississippi Embayment sedimentary aquifers in the East Arkansas and South-central Arkansas WRPRs is generally good in the recharge areas and deteriorates to the southeast where the aquifers are deeper.
- Groundwater quality in the Interior Highlands of Arkansas is generally good, except where impacted by human activities.

2.4 Gap Analysis

• The projected annual average 2050 groundwater gap (the difference between supply and demand) across the State is approximately 8.2 million AFY assuming sustainable groundwater pumping. The groundwater supply gap is projected to occur primarily in the East Arkansas WRPR.

- There is sufficient excess surface water in four major river basins to close the projected groundwater gap: Arkansas River, Ouachita River, Red River, and White River. However, the appropriate infrastructure may not be in place to use all of the excess surface water supply.
- Three major river basins are projected to have a water supply gap in 2050 taking into account both groundwater and surface water supplies: Bayou Macon, Boeuf River, and L'Anguille.
- The Boeuf River Basin is projected to experience a surface water gap (supply less than demand) in June, July, and August based on average flow conditions over the period of record.

2.5 Water and Wastewater Infrastructure

- \$3.4 to \$7.7 billion is the range of estimated costs to build the infrastructure necessary to switch from irrigation using groundwater to surface water irrigation in the nine major river basins in the East Arkansas WRPR. The cost of this infrastructure should be considered in the context of the \$9.7 billion annual market value of agricultural products in Arkansas.
- The Grand Prairie Area Demonstration Project and Bayou Meto Water Management Project, when complete, will provide surface water sources for irrigation to 15 percent of the area with projected groundwater gaps.
- Arkansas water providers will need \$5.74 billion and wastewater providers will need \$3.76 billion to build, maintain, and replace required infrastructure through 2024.
- Small water and wastewater providers pose a unique challenge when planning at the statewide level, as their individual needs are small and widespread, but together they make up a large portion of the needs.
- Many of these providers also face the challenge of shrinking population and resulting in reduced revenue streams, following the national trend of increased urban dwelling.

² T.M. Kresse, P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeirer, D.A. Westerman, and J.M. Blackstock, Aquifers of Arkansas: Protection, Management, and Hydrologic and Geochemical Characteristics of Arkansas' Groundwater Resources, U.S. GEOLOGICAL SURVEY (In Review, 2013).

3 Issues and Recommendations

This 2014 Update of the AWP is built from the bottom up, starting with the fundamental building blocks of how much water do we need (water demands), how much water do we have (water availability), and what is the difference between demand and supply (the "gap"). However, the crux of the AWP is what can be done about the gaps. The issues, recommendations, and implementation strategies described in this section are the culmination of ANRC consideration of regional and statewide stakeholder-driven workgroup proposals.

The function of the Issues and Recommendations (I&R) Workgroups was to identify and prioritize water issues and recommendations for resolving the water issues in the five WRPRs and statewide in Arkansas. There were five Regional I&R Workgroups The members of the I&R Workgroups were volunteer representatives from 11 water demand sectors:

- Agricultural Irrigation
- Agricultural Livestock/Poultry/Aquaculture
- Conservation Districts
- County Governments
- Fish and Wildlife
- Industry
- Municipal Governments
- Navigation
- Public Water/Wastewater Providers
- Recreation
- Thermoelectric Utilities

The formation of the I&R Workgroups and the process used to elicit I&Rs is described in the Issues and Recommendations Workgroup Process and Outputs Technical Memo (Appendix H of the AWP).

The Regional I&R Workgroups were first asked to identify issues and prioritize those issues using a voting process. The Workgroups were then asked to develop recommendations to address the issues. The recommendations were also prioritized using a voting process. All of the I&Rs identified by the I&R Workgroups are presented in the Issues and Recommendations Workgroup Process and Outputs Technical Memo (Appendix I of the AWP).

The final step in the I&R process was the ANRC selection of priority issues. The Commissioners considered all of the I&Rs identified and prioritized by the I&R Workgroups and selected nine priority issues and one supporting issue. Each of the priority issues are presented in this section along with the prioritized recommendations and an implementation strategy.

The 1990 AWP also had I&Rs, many of which were the same or similar to the nine priority issues and recommendations selected by the ANRC in 2014. The relationship between the 1990 I&Rs and the 2014 priority I&Rs is shown on Table 3-1 (located at the end of this section), which maps the 2014 priority issues to the 1990 issues, the 1990 recommendations, and finally, the 2014 recommendations.

Each priority issue has an implementation strategy. These issue-specific strategies fit within the AWP Implementation Plan described in Section 4.

Issues and Recommendations Workgroup Meeting – *Photo courtesy of Terry Horton*

3.1 Conjunctive Water Management and Groundwater Decline Priority Issue

Issue: Declining groundwater levels in the aquifers and the need to move toward sustainable use of the groundwater.

Background

The 1990 AWP stated that groundwater levels were declining in the Mississippi River Valley alluvial aquifer in the Grand Prairie Region and the area west of Crowley's Ridge and in the Sparta Aquifer. There were several recommendations to address this issue in the 1990 AWP, including conversion from groundwater to surface water, and employment of a conjunctive water management strategy. As a result of the 1990 AWP, three critical groundwater areas were designated by the ANRC: South Arkansas, Grand Prairie, and Cache. A "critical groundwater area" is an area determined by the Commission to have significant groundwater depletion or degradation. Additionally, the Sparta aquifer was also determined to be a "sustaining aquifer," which means that any well withdrawing groundwater must have a properly functioning metering device.

Since 1990, groundwater levels in the Mississippi River Valley alluvial and Sparta aquifers have continued to decline. The ANRC measures water levels in wells on an annual basis and publishes the "Arkansas Groundwater Protection and Management Report." The Groundwater Protection and Management Report for 2013 found that static groundwater levels throughout the Mississippi River Valley alluvial aquifer declined in nearly 80 percent of the 232 wells monitored in the 2012-2013 season resulting in average decline of 1.44 feet over the entire alluvial aquifer. This is consistent with the 10-year trend of groundwater levels in the Mississippi River Valley alluvial aquifer.

In its simplest context, conjunctive water management is the shared and coordinated use of surface and groundwater to satisfy desired water needs. However, there is a difference between conjunctive water use and conjunctive water management. Conjunctive water use simply implies that both sources of water are used without considerations of the benefits or

impacts on either source. Conjunctive water management is managing both surface water and groundwater resources such that the total benefits of integrated management exceed the sum of the benefits that would result from an independent management of each water resource. Act 749, passed in 2011, amends Arkansas Code § 15-22-201 to improve State water planning and ensure that water quality and quantity are considered. The provisions of Act 749 further reinforce the development and implementation of conjunctive water management in Arkansas.

The effectiveness of conjunctive management is clearly shown in the Union County area of Arkansas. During the 10-year monitoring period (2003-2013), there were declines in the Sparta aquifer in 78 percent of the wells monitored. However, the aquifer-wide average change was +6.75 feet, primarily due to the recovery of the Sparta aquifer in the South Arkansas Study Area. Union County alone had an average change of +36.83 feet over the 10-year period. The recovery of water levels in Union County are a testament to the positive impact of conjunctive management through the use of excess surface water from the Ouachita River, combined with education and conservation.

Workgroup Concerns

I&R Workgroup members acknowledged the greatest issue in the East Arkansas WRPR is the continued decline of the alluvial aquifer and the need to move toward sustainable use of the alluvial aquifer. There is a need to transfer from groundwater to surface water sources for agricultural irrigation. However, there is also an understanding that there might not be sufficient surface water resources to satisfy the irrigation demand.

Goals

- Reduce groundwater withdrawals and move toward a sustainable groundwater use
- Provide sustainable yield protection for the Sparta aquifer
- Ensure water is available to satisfy irrigation uses through conjunctive water management

Recommendations

The following were recommended to address groundwater decline:

- 1. ANRC will seek authority to purchase, install, and read meters on selected alluvial wells including the authority to lease or condemn sites for meter installation.
- 2. Develop and implement conjunctive water management strategies based on storing surface water, during months when excess water is available, for use during the summer irrigation months when excess surface water is not available (Figure 3-1). Groundwater use would supplement surface water use, rather than being the primary irrigation water source.
- 3. Encourage and increase irrigation water use efficiency through integrated irrigation water management and conservation practices over the next decade.

Implementation Plan

1. ANRC will formulate and implement conjunctive water management strategies for the East Arkansas WRPR, initially targeting critical groundwater areas. These strategies will be developed over the next year with input from other agencies,

- organizations, and stakeholders through a process similar to that used by the I&R Workgroup for eliciting input for the AWP.
- 2. ANRC will emphasize on-farm storage/tailwater recovery systems, to store water during the wet season for use during the irrigation season, and integrated irrigation water management practices to reduce water use.
- 3. ANRC will: (1) document the economic benefits of using surface versus groundwater sources and the economic benefits of integrated irrigation water management and conservation practices; and (2) prepare stakeholder awareness, outreach, and educational information to be disseminated this to the agricultural community through multiple sources, including Conservation Districts, Cooperative Extension, and professional associations and organizations in the East Arkansas WRPR.
- 4. ANRC, through Conservation Districts, will document the acres of on-farm storage/tailwater recovery systems and irrigation water conservation practices that have been implemented, by county and critical groundwater areas, in the East Arkansas WRPR and report these findings annually.

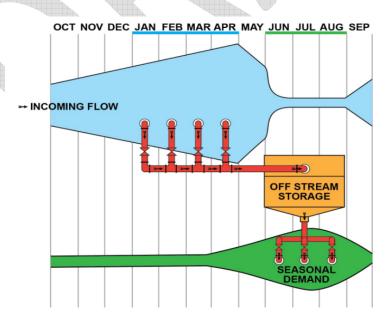


Figure 3-1. Operational Example of Conjunctive Water Management

3.2 Drought Contingency Response Priority Issue

Issue: Planning for allocation during drought is needed before droughts occur.

ANRC "Rules for the Utilization of Surface Water" (Title 3) has several sections specifically related to allocation of surface water during times of shortage:

- Subtitle VII. Allocation of surface water during periods of water shortage
- Subtitle VIII. Procedure for allocation of surface water during periods of shortage
- Subtitle IX. Formal allocation of surface water during period of water shortage
- Subtitle X. Commission initiated allocation
- Subtitle XI. Implementation of allocation plan
- Subtitle XII. Penalties
- Subtitle XIII. Emergency allocations

A water shortage has never been declared in Arkansas. Droughts, however, have occurred in the past and will occur in the future. In fact, extremes of both drought and flooding are projected to increase in the future.

Workgroup Concerns

I&R Workgroup members identified drought contingency planning as an issue that needed to be addressed in the AWP. Members expressed concern that adequate water may no longer be available to meet demands by the time a shortage is declared. Of as great a concern was the lack of a coordinated response among agencies, organizations, and the private sector when the onset of a drought was imminent. Having a drought response network in place with information on voluntary conservation measures that could be implemented is needed.

Goals

- Prioritize and protect public drinking water, while ensuring all water uses and users have water to meet their needs, even if limited, during times of drought or water shortage.
- Provide a framework for water users within the various use sectors to share consistent, coordinated information about drought, drought responses, and conservation.

Recommendations

The following are recommendations for drought contingency responses:

- 1. Develop a coordinated drought contingency response network among State and federal agencies; drinking water utilities, organizations, and institutions; and the private sector for alerting the public about impending droughts, sharing consistent messages and information, and providing information on voluntary conservation measures to reduce water use.
- 2. Seek funding and ensure stream gaging networks throughout the State are adequate to provide streamflow information needed to make informed decisions about impending or advancing droughts statewide and within each planning region.

Implementation Plan

The following steps will be considered in implementing the recommendations:

1. ANRC will form a Drought Response Team to coordinate and collaboratively disseminate information on emerging drought conditions across the State. This team will include State and federal agencies, including emergency response agencies and Cooperative Extension, as well as drinking water utilities, nonprofit organizations, institutions, and private sector professional organizations with stakeholder networks.

- The State agencies that will be part of the Drought Response Team are those agencies whose constitutional and statutory mission is directly tied to water management during shortages and droughts: ANRC, Arkansas Department of Environmental Quality (ADEQ), Arkansas Game and Fish Commission (AGFC), Arkansas Department of Health (ADH), and Department of Agriculture.
- 2. The Drought Response Team will review existing State and federal drought resources and build on these to develop communication networks and links across the State and within each planning region. The team, as needed, will prepare and disseminate consistent, coordinated drought messages and voluntary conservation practices to reduce water use. Water use sector representatives from the AWP I&R Workgroup will be asked to help disseminate these messages.
- 3. The Drought Response Team will interact with ANRC and other entities to identify educational programs to help the public better understand how to reduce the likelihood of drought responses through everyday conservation practices (fixing leaky faucets), changes in State codes that encourage water conservation (e.g., use of low-flush toilets) and water reuse (e.g., gray water for watering lawns), and programs that encourage and assist with water conservation activities (e.g., Cooperative Extension, U.S. Environmental Protection Agency [EPA] WaterSense). In addition, these educational programs can also include information on what the potential impacts and outcomes might be during drought.

- 4. ANRC will encourage the development of preallocation plans in basins or subbasins where shortages currently occur. Consistent with State law, these pre-allocation plans should prioritize riparian users above nonriparian users. These preallocation plans can initiate discussions among water users and other stakeholders on how water would be allocated during drought (e.g., riparian vs. nonriparian users, among riparian users) and the quantity of water available for different uses.
- 5. ANRC will conduct a review of the stream monitoring network in each of the planning regions and assess the adequacy of the network in providing adequate information for decisionmaking during both drought and flooding. While the emphasis of this recommendation is on drought responses, the review should also consider decision-making on responses during flooding.
- 6. The stream network review should include a collaborative meeting among agencies, utilities, and organizations that fund stream gages to evaluate the potential for leveraging or apportioning costs among entities to increase the information per unit cost among all entities.

Identifying issues – Photo courtesy of Terry Horton

3.3 Excess Water for Nonriparian Withdrawal and Use Priority Issue

Issue: The statutory definition of excess water should be based on sound science.

Background

Although riparian water users may withdraw as much water as they need from a stream so long as they don't unreasonably interfere with a fellow riparian's use, withdrawals by nonriparians are statutorily limited by the definition of excess surface water. ANRC Title 3 defines excess surface water as 25 percent (to automatically increase to any higher percentage authorized by the Arkansas General Assembly simultaneous with the effective date of any such act) of the average annual yield from any watershed above that amount, as determined by the ANRC, required to satisfy all of the following that are applicable:

- 1. Riparian and nonriparian usage reported for the 1989 water year as provided for in Title 3 Subtitle II.
- 2. The water needs of federal water projects as they existed on June 28, 1985.
- 3. The firm yield of all affected reservoirs existing on June 28, 1985.
- 4. Maintenance of minimum streamflows for the following streams (these constitute an initial phase. Other streams will be added as needs arise and resources are made available):
 - a. Arkansas River from Oklahoma boundary to mouth,
 - b. Black River from Missouri boundary to mouth,
 - c. Eleven Point River from Missouri boundary to mouth,
 - d. Ouachita River from Lake Catherine to the Louisiana boundary,
 - e. Red River from Texas boundary to Louisiana boundary,
 - f. St. Francis River from Marked Tree to mouth,
 - g. Spring River from Missouri boundary to mouth, and
 - h. White River from Bull Shoals Lake to mouth.

5. Future water needs of the watershed as projected in the AWP.

The 25% number referenced in the excess surface water definition is an arbitrary number without a scientific basis adopted by the Arkansas General Assembly to provide some protection to the uses identified above.

Because there is no scientific basis for this number, nonriparians have never been satisfied with this definition as they feel it does not leave sufficient water to satisfy nonriparian withdrawals. The Gap Analysis Report (Appendix F) evaluated the "total available" surface water, which is the available water when, after accounting for various riparian and instream needs, 100 percent of the remaining water is available for use.

On an annual, average basis, if the 25 percent excess water constraint was removed, it would provide sufficient additional water to satisfy nonriparian withdrawal demands in the Lower White River, St. Francis River, and Bayou Bartholomew. However, even if all total available water were available for nonriparian withdrawal demands, there would be a gap (i.e., shortage) in Bayou Macon, Boeuf, and L'Anguille River watersheds during the summer irrigation months.

Finally, there are two separate issues embedded within the discussion of excess water. The first issue relates to the statutorily defined percentage for excess water. Changing this percentage requires legislation. The second issue relates to the methodology used to estimate instream needs. The methodology (Arkansas Method) (Filipek et al. 1987) is operationally defined by the ANRC and modifying or revising the methodology requires only ANRC approval. The Arkansas Method methodology was used to update the AWP excess water calculations.

Note that the White River Basin has different excess water constraints. For purposes of nonriparian water use and permitting in the White River Basin, the transfer amount shall not exceed on a monthly basis an amount that is 50 percent of the monthly average (for each individual month) of excess surface water.

³ S. Filipek, W.E. Keith, and J. Giese, *The Status of the Instream Flow Issue in Arkansas*, 1987 PROCEEDINGS ARKANSAS ACADEMY OF SCIENCE, 1987, pp. 43-48

Workgroup Concerns

I&R Workgroup members stated the 25 percent restriction on excess surface water is too limiting and the percentage should be raised to 75 percent. Other I&R Workgroup members stated the percentage should be based on what is needed to satisfy instream needs. The East Arkansas WRPR has the greatest and most immediate supply need, and that is the WRPR that expressed the greatest concern about the current statutory limitation on excess surface water. While the other WRPRs are projected to have sufficient excess water to satisfy demand, there were concerns expressed by all of the WRPRs about the excess water restriction. The following considerations focus on the East Arkansas WRPR.

Goals

- Protect public drinking water while ensuring adequate water is available to meet demands and to satisfy nonriparian withdrawals and transfers.
- Implement the AWP through adaptive management, incorporating better scientific methods and BMPs as they become available.

Recommendations

The following are recommended to address the excess water issue:

- 1. Remove the 25 percent limitation for estimating excess water available for nonriparian transfer and conduct scientific studies to determine what proportion of the total available water is seasonally appropriate to satisfy the required uses specified in statute by major basins and subbasins in each planning region, beginning with the East Arkansas WRPR, and followed by, in order, South-central, West-central, North, and Southwest Arkansas WRPRs. This study should be conducted in consultation with the AGFC and ADEQ.
- 2. Continue to use the Arkansas Method in estimating the proportion of total available water needed to

- satisfy fish and wildlife flow needs in estimating excess water for nonriparian withdrawals and transfers. Through adaptive management, the ANRC will evaluate and assess alternative methods for estimating fish and wildlife flows, or other instream needs and uses, as more accurate, scientifically reviewed, and defensible methods become available.
- Engage stakeholders in the planning regions through an open and transparent process as the scientific study is being conducted by ANRC and as better scientific approaches become available and are proposed for use.

- 1. ANRC will develop the study plan, and conduct the study, for determining the proportion of total available water that could be permitted for nonriparian withdrawals in collaboration with AGFC and ADEQ. The study will also include reviewing and validating the administrative process for determining instream flow needs as well as the scientific component of fish and wildlife flows. The study plan will be presented at appropriate professional and scientific meetings and made available for public review on the ANRC website.
- 2. ANRC will propose statute changes for eliminating the 25 percent limitation on nonriparian withdrawals and promulgate alternative proportions of water available for nonriparian withdrawal, by major basins and subbasins, within each planning region based on the outcomes of this scientific study. Public meetings will be conducted on these proposed statute changes.
- 3. ANRC will periodically (e.g., 5-year intervals) evaluate existing and new methods for estimating instream flows used in determining excess water. As better methods become available, the ANRC will adopt these methods and refine the estimates of excess water available to satisfy nonriparian withdrawals or transfers.

3.4 Funding Water Resources Development Projects Priority Issue

Issue: State-issued general obligation bonds are vital to finance and refinance the development of water; waste disposal; pollution control, abatement, and prevention; drainage, irrigation, flood control, wetlands, and aquatic resources projects to serve the citizens of the State of Arkansas.

Background

Funding typically is the issue for most major state projects, and it is especially so for water projects. In general, water is undervalued and, subsequently, underfunded. For example, Arkansas municipal and county infrastructure funding needs for water and wastewater projects alone are estimated to be about \$5.75 billion by 2024. Federal grants, cost-share, and loan funds, and programs for water and wastewater projects are continuing to decline and are not anticipated to increase in the future.

The Grand Prairie project was initially estimated to cost about \$350 million, but project delays have increased this cost to over \$600 million, with even greater costs projected if additional funding cannot be obtained or is delayed.

Additionally, funding is necessary for critical maintenance of locks and dams on McClellan–Kerr Arkansas River Navigation System. In addition to navigation, water in the navigation pools is used for agriculture, recreation, municipal and industrial water supply, habitat for fish and wildlife, and hydropower.

Workgroup Concerns

I&R Workgroup members identified numerous projects in need of financing and funding. These ranged from completing the Grand Prairie and Bayou Meto projects to failing infrastructure, repair of PL566 structures (flood control structures constructed with funding from the Natural Resource Conservation Service [NRCS]), additional flood control projects, continuing support of Conservation Districts, research

on more efficient water conservation and management practices, and public awareness, outreach, and education programs. In addition, delays in project funding contribute to escalating costs. Sustainable sources of funding are needed not only to meet current funding needs, but also to address future needs.

Goals

- Provide sustained funding for water resources projects, from new construction to maintenance and replacement of failing projects.
- Create, sustain, and integrate funding across programs to enhance sustainable water resources management.

Recommendations

The following is recommended to address additional funding for water resources development projects:

- As an initial step, authorize an additional \$300 million under the Water, Waste Disposal, and Pollution Abatement Facilities General Obligation Bond Program at the appropriate time. Additional authorization will be requested as needed to finance and refinance the development of these water resources projects.
- 2. ANRC will seek the authority to merge water and sewer systems where necessary in order to bring them into economic viability.

- ANRC will estimate funding needed for existing water resources projects and anticipated future needs by WRPR. These estimates shall include existing cost-share requirements associated with current federal and State financing and funding.
- 2. ANRC will collaborate with other State and federal agencies and other organizations to integrate additional funding or financing opportunities with ANRC funds for water resources projects.

3.5 Improving Water Quality through Nonpoint Source Management Priority Issue

Issue: Water quality is affected by nonpoint sources of pollutants and nonpoint source management projects need State funding in addition to federal funding.

Background

Water quality must also be adequate to ensure that water sector uses can be satisfied. The authority for protecting, managing, and restoring water quality in streams, rivers, reservoirs, and lakes in Arkansas resides primarily in three agencies - ADEQ, ADH, and ANRC. ANRC has primary authority for nonpoint source (NPS) pollution management, while ADEQ has primary authority over point sources, surface water quality criteria, enforcement, and assessment. The ADH has primary authority over drinking water quality. While authority and responsibilities are delegated among different agencies, water quality is holistic and requires interaction, collaboration, cooperation, and coordination among all three agencies, with the participation of other agencies, organizations, institutions, and the private sector. There are, and have been, numerous interactions among all these agencies since the publication of the 1990 AWP, through the Arkansas Watershed Forum, funding of water and wastewater treatment facilities, prioritizing and targeting watersheds with impaired water bodies for watershed management plans and practices, and membership in the ADEQ Pollution Control and Ecology Commission.

The ANRC NPS Program is described in the Arkansas 2011-2016 NPS Pollution Management Plan. It is complementary to the List of Impaired Waterbodies (303(d) report) and Water Quality Assessment Report (305(b) report) prepared every other year by the ADEQ. The plan's purpose is to provide an overarching guide to develop, coordinate, and implement plans and programs to reduce, manage, or abate NPS pollution. It provides a focal point for public agencies, nonprofit organizations, interest groups, and citizens to discuss and address NPS pollution together. The plan provides the basis (a decision support matrix) that allows stakeholders to evaluate and rank risk factors influencing the potential outcome of alternative NPS investment strategies. This systematic approach

encourages engagement and professional investment by participants. The product is a consensus-built, science-based priority ranking of watersheds in which investment holds the greatest promise for results. The process promotes adaptive management of the changing circumstance of available resources, demonstrated need, capacity to deliver, and measure new knowledge.

Workgroup Concerns

I&R Workgroup members noted that finances continue to be an issue for funding NPS management projects. Currently, only federal funds are available for funding NPS pollution and management programs. While federal funds are desirable, there are restrictions on where, when, and how NPS management practices can be implemented. Having an alternative source of revenue would increase the effectiveness of the NPS water quality program.

In addition to alternative funding sources, collaboration among ANRC and ADEQ was reiterated as critical to improving water quality throughout the State.

Goals

 Adaptively manage watersheds so all designated uses of water can be attained and sustained over time

Recommendations

Recommendations for improving water quality include:

- 1. Propose legislation to designate funding specifically for financing NPS pollution management programs and implementing NPS management practices.
- 2. ANRC will collaborate with ADEQ and AGFC through the biennial Clean Water Act (CWA) water quality review processes, and the water quality criteria review to determine attainment or nonattainment of water quality standards in streams and identify the sources and causes of nonattainment.
 - a. Streams impaired because of NPS pollution will be considered as priority streams for restoration through the NPS management program.

- Streams currently attaining water quality standards in priority watersheds will be considered for protection through the NPS management program.
- 3. Study whether nutrient management plans should be required outside current nutrient surplus areas.
- 4. Leverage funding from multiple sources such as Source Water Protection under the Safe Drinking Water Act, administered through the ADH, to address NPS pollution in watersheds with drinking water sources.

Implementation Plan

The following steps will be considered in implementing the recommendations:

1. Evaluate and assess the funding needs of the NPS management program, including existing federal funds, priority watershed needs, both for

- restoration and protection; and monitoring requirements for documenting water quality changes over time. Continue to leverage funds among programs that reduce NPS pollution.
- Propose legislation to authorize funding specifically for the NPS management program, based on the evaluated needs of the program.
- 3. Participate with ADEQ and AGFC in the biennial assessments of water quality focusing on NPS pollution and NPS management practices to restore streams to their designated uses and protecting streams currently attaining those uses.
- 4. ANRC and AGFC will participate in triennial review of water quality criteria, focusing on identifying reference water quality for different classes of streams within ecoregions.

3.6 Public Awareness and Education **Priority Issue**

Issue: Public awareness and education are critical for water planning in Arkansas.

Background

The 2008 Winthrop Rockefeller Foundation Water Issues in Arkansas Report found that the greatest water issue in Arkansas was lack of public awareness and knowledge about water and water resources in Arkansas. This situation has not changed in the 6 years since this report was published, and was reinforced during the scores of public meetings held over the past 2 years in updating the 1990 AWP. This is not surprising, given the complexity of water issues.

Workgroup Concerns

I&R Workgroup members identified the need for public awareness and education not only statewide, but also in every WRPR. While the public awareness and education issues varied among regions, the need for additional public awareness and education on water issues was invariant within and among regions. One challenge is that many water use sectors desire their water use issues receive priority over the issues of other sectors. As a result, the public hears multiple messages that, in many cases, are in conflict with each other. While differences are to be expected, and, in some cases, needed, there are also fundamental themes related to water that are universally true across all sectors.

Goals

 Encourage public engagement in water planning in Arkansas

Recommendations

The following is recommended to address the need for public awareness and education:

1. The ANRC will collaborate with the Arkansas Water Foundation, the Arkansas Association of Conservation Districts, the University of Arkansas (U of A) Cooperative Extension Service, and others to develop and disseminate public information. This information should focus on water conservation practices being implemented by agriculture in Arkansas, the contributions of agriculture to the economy, food security, the quality of life in Arkansas, advances in water conservation technology, and trends in groundwater and surface water use.

Implementation Plan

The following steps will be considered in implementing the recommendations:

- 1. Establish a water forum summit organized and funded through the ANRC Water Foundation. This water forum summit would bring together leaders from all water use sectors to receive information on innovative ideas, brainstorm ideas, identify additional stakeholders who should be invited to participate in water forum planning and activities, initiate planning, and commit to improving public awareness and education.
- 2. Through the water forum and stakeholders from each water sector in each WRPR, prepare an integrated and coordinated public awareness and education campaign and program that formulates consistent messages about water, with illustrations and examples from each of the water use sectors and important issues in that WRPR. This program would emphasize the inter-relationships with water among all sectors, whether environmental, social, or economic.
- 3. Periodically review the program, resurvey, and modify the messages as different media, communication vehicles, technological advances, and public knowledge about water changes over time.

3.7 Public Water and Wastewater Infrastructure Priority Issue

Issue: Public water and wastewater infrastructure is failing, and in need of repair and replacement throughout Arkansas.

Background

Public water and wastewater infrastructure, including flood control, levee, and drainage, both municipal and county, is failing, and is in need of repair, upgrades, and replacement throughout Arkansas, just as it is throughout the U.S. To assess infrastructure needs throughout Arkansas, surveys were sent to the 699 public water and wastewater providers. The survey collected information on planning efforts by each provider, including projects identified in master plans, asset management plans and strategies, and current and planned funding sources. Overall, through 2024, Arkansas water providers will need \$5.74 billion to build, maintain, and replace required infrastructure (Table 3-2) (Appendix F). The survey results largely confirmed EPA's Drinking Water Infrastructure Needs Survey and Assessment (DWINSA), which estimated that the water infrastructure need in Arkansas is approximately \$6.10 billion through 2031 (EPA 2013).4

Table 3-2. Water and Wastewater Infrastructure Survey Results

Jui vey mes				
	Small Systems	Medium Systems	Large Systems	
Drinking Water Infrastructure Needs				
Number of Responses	37/534*	55/154	1/1	
Estimated Total Need	\$3,059,700,000	\$2,393,100,000	\$291,100,000	
Wastewater Infrastructure Needs				
Number of Responses	14/238	15/94	1/1	
Estimated Total Need	\$1,259,000	\$33,883,070	\$271,911,362	

^{*} Number Responding/Number Sent

In areas of Arkansas where water supplies are inadequate to meet needs, water conservation and reuse programs could be effective in extending the water supply.

4

Workgroup Concerns

I&R Workgroup members acknowledged public water and wastewater infrastructure is failing, and in need of repair and replacement throughout Arkansas, from small to large systems. In addition, many of the existing State funds available for infrastructure projects—Water Resources Development General Obligation Bond Program; Water Development Fund Program; Water, Sewer, and Solid Waste Management Systems Program; Water Resources Cost Share Revolving Fund Program; and Water, Waste Disposal, and Pollution Abatement Facilities General Obligation Fund Program—are unfunded or limited in funding capacity. Based on the survey results, at least 25 percent of providers rely on State funding assistance programs, but smaller providers are significantly more likely to seek grants rather than rely on bonds, loans, or system revenue. Finally, there are also issues with maintaining and operating existing facilities as both the facilities and personnel age. Small and mediumsized systems have difficulty hiring and retaining licensed water and wastewater treatment operators.

Goals

- Provide adequate water and wastwater services.
 Repair, replace, and maintain State water infrastructure across all communities in Arkansas.
- Develop and implement programs that will provide for sustainable infrastructure programs across all communities in Arkansas.

Recommendations

The following are recommended to address the infrastructure issue:

- Public entities operating water and wastewater infrastructure or flood control and drainage projects should develop sustainability plans that evaluate:
 - a. Current infrastructure status and historical trends in status;
 - b. Needed infrastructure repairs, replacement, and maintenance and associated schedules;
 - c. Federal and State programs available to support infrastructure projects; and
 - d. Contingency plans, including the potential for regionalization or privatization (private water

⁴ EPA 2013

- wells, septic systems, decentralized systems, etc.), if the utilities are assessed to be unsustainable.
- 2. Receivership proceedings should be initiated for public water and wastewater providers that have defaulted on loans.
- 3. Training programs should be developed for utility boards of directors on sustainability planning and how these plans relate to the operation of their facilities and infrastructure. Utilities that submit a sustainability plan with funding applications could receive lower rates on loans.

- 1. Convene an advisory team from ADEQ and ADH to assist in identifying elements of sustainable infrastructure plans, formulating the planning process, and defining the roles of each of these agencies in the planning process, using information from EPA and other federal agencies, and State and local drinking water and wastewater utility organizations.
- 2. Follow up on the survey responses from utilities statewide to determine which utilities currently have long-range plans for sustainable infrastructure, which utilities have the capabilities

- for developing these plans, and which utilities will need assistance.
- 3. Develop and implement an awareness campaign to promote the development of sustainable infrastructure plans for utilities statewide. This campaign should include the process and criteria to be used in providing assistance to local utilities in preparing sustainable infrastructure plans. Work with State water utility organizations to implement this campaign.
- 4. Track the number of utilities that request assistance in developing sustainable infrastructure plans, the number of plans prepared, and the number of plans being implemented by these utilities.
- 5. In collaboration with ADEQ, ADH, federal agencies, and State water utility organizations, develop training programs and modules for utility directors that emphasize the importance, development, and implementation of sustainable infrastructure plans, the performance measures that can be used to track progress, and the process for periodically updating these plans. These training modules should be structured primarily for small to medium sized facilities.

3.8 Reallocation of Water Storage in Federal Reservoirs Priority Issue

Issue: Reallocation of water storage in U.S. Army Corps of Engineers (USACE) reservoirs is needed to increase available water for existing and new uses.

Background

Many of the USACE reservoirs in Arkansas were completed before 1970. The authorized project purposes for many of these reservoirs did not include drinking water supply, recreational use, or downstream aquatic life use discharges. Water use and demand has changed considerably in Arkansas over the past 40 to 50 years with minimal corresponding change in water storage allocation in USACE reservoirs.

Workgroup Concerns

I&R Workgroup members identified reallocation of water storage in USACE reservoirs as an issue, and one way of increasing available water for uses other than those congressionally authorized in the original project purposes. This is seen as an issue because the Water Supply Act of 1958 requires congressional approval of reallocation of water storage if water supply storage would seriously affect the original project purposes or involve a major operational change for the project. Given the current status of congressional actions, congressional approval of a reallocation request could be delayed for a significant number of years.

After passage of the 1958 Water Supply Act, USACE developed a guidance manual for implementing the act. In 1977, a provision was added to this guidance manual, which states:

Modifications of project purposes to allocate all or part of the storage serving any authorized purpose from such purpose to storage serving domestic, municipal, or industrial water supply purposes are considered insignificant if the total reallocation of storage that may be made for such water supply uses in the modified project is not greater than 15 per centum of total storage capacity allocated to all authorized purposes or 50,000 acre feet, whichever is less.

Fortunately, reallocation of storage for water supply has already occurred in seven USACE reservoirs in Arkansas based on this guidance manual provision.

Goals

- Provide sustainable sources of water for water supply in Arkansas.
- Integrate federal water projects with State, county, and municipal water projects to ensure sustainable water supply in the future.

Recommendations

Reallocation of water storage in USACE reservoirs, based on the revised 1977 Water Supply Act guidance manual, should be sought if there is a documented need for additional water for domestic, municipal, or industrial water supply.

- 1. ANRC will review water supply needs within each of the WRPRs and determine if these water needs might be supplied through reallocation of water storage in USACE reservoirs within the WRPRs.
- 2. If reallocation of water storage is a feasible alternative and local sponsors are interested, if requested, ANRC will assist the appropriate entity to prepare and submit a request to the appropriate USACE District for a reallocation study to support the reallocation of water storage.

3.9 Tax Incentives and Credits for Integrated Irrigation Water Conservation Priority Issue

Issue: Tax incentives and credits are needed to encourage the implementation and management of integrated irrigation water conservation practices.

Background

Groundwater decline in the East Arkansas WRPR is recognized as the greatest water issue in the region, if not in the State. Agricultural irrigation withdrawals represent about 80 percent of the total water withdrawals in the State, and these irrigation withdrawals are almost all groundwater withdrawals from the Mississippi River Valley alluvial aquifer. Tax incentives are available under the ANRC Water Resource Conservation and Development Incentives Act. These incentives include an income tax credit for construction of on-farm impoundments or storage systems, for the conversion from groundwater to surface water, and for land leveling to conserve irrigation water.

The Alternatives Analysis (Appendix *G*) includes an evaluation of water savings from increased irrigation efficiency. About 1.3 million AFY could be conserved if the application rates were reduced to the State average in the counties that are currently above the State average.

Workgroup Concerns

I&R Workgroup members stated greater emphasis was needed on tax incentives and credits to encourage the implementation and management of integrated irrigation water conservation practices. These integrated practices should include flow meters, surge valves, PHAUCET/Pipe Planner, multi-inlet irrigation systems, on-farm storage and tailwater recovery systems, remote controls, soil moisture monitors, irrigation scheduling, satellite monitoring of soils and crops, and cellular links to weather stations. Water conservation practices need to be an integral part of irrigation water management, regardless of whether the source is groundwater or surface water.

Recommendations

The following was recommended for tax incentives and credits to encourage increased water use efficiency and conservation:

- Determine the current irrigation water use efficiency for various crops and subwatersheds in the East Arkansas WRPR and establish a goal or target efficiency to be achieved for integrated irrigation water management and conservation practices.
- 2. Evaluate the effectiveness of the existing tax credits and incentives and, based on this assessment, consider:
 - a. Increasing the percentage of the total project cost available for tax credits based on applicants improving their irrigation water use efficiency compared with the goal or target efficiency,
 - b. Extending the period for claiming tax credits for implementing water conservation practices,
 - c. Increasing the annual cap on tax credits so additional tax credits can be claimed, and
 - d. Tracking the acreage on which water conservation practices have been implemented along with the tax credits.

- 1. ANRC will work with the U.S. Department of Agriculture Natural Resource Conservation Service (USDA-NRCS) and the U of A Cooperative Extension Service to determine the current water use efficiency for various types of irrigation water management practices and reasonable targets for near maximum efficiency of these different irrigation management practices.
- 2. ANRC will work with Conservation Districts to develop a ranking system for cost-sharing support that encourages, and provides higher ranking to, applications that include multiple, integrated conservation practices, with flow meters being included in these suites of practices. This ranking system should also consider perpetual easements for eliminating land from agricultural production and irrigation.

- 3. ANRC will evaluate modifications to the tax credit and incentive program to determine if there are additional incentives that might be added to encourage reduced water use. These should include, but not be limited to, an increase in the cap on total tax credits available in any year and the inclusion of tax credits or deductions for permanent easement of land from agricultural production.
- 4. ANRC will indicate to the U.S. Secretary of Agriculture that any uncommitted NRCS EQIP funds from other states should be devoted strictly to funding and implementing integrated irrigation water management practices in Arkansas. A similar relationship has been established by the USDANRCS in Mississippi.
- 5. ANRC, in conjunction with the Water Foundation and Conservation Districts, will develop programs to increase awareness that water can be conserved while sustaining or improving crop yield.

- 6. ANRC will develop an electronic form for use by Conservation Districts to record which water conservation management practices, and associated acreage, are being implemented. This form should be completed by the producer or landowner when they report their water usage for the previous year.
- 7. ANRC will periodically (e.g., 5-year intervals) evaluate progress in implementing water conservation practices and determine if additional incentives or outreach are required to increase water use efficiency of irrigation water.

3.10 Supporting Issue 1: Water Use Reporting

Supporting Issue: The accuracy of water use reported for agricultural irrigation has been questioned because the water use is not measured or metered.

The accuracy of water use reported for agricultural irrigation has been questioned because the water use is not measured or metered. Water use reporting, which primarily consists of estimates of the water used, is required for each withdrawal site in the State. There is quality assurance criteria embedded within the reporting system to ensure that unreasonable water uses (extreme high or low estimates) are not reported. For example, reporters of agricultural irrigation withdrawals are required to submit crop acreage by crop type in addition to estimated quantity of water used. An average crop water use factor is applied to estimate water used by the crop type and acreage reported for agricultural irrigation withdrawal permits. An average water use for irrigating rice, for example, might range between 32 and 38 inches per acre. If the reported use for rice were significantly outside this range, the estimated water use would not be accepted at the time of reporting.

To address the issue of water use reporting for agricultural irrigation, it is recommended that:

- 1. ANRC should form an Agricultural Irrigation Science Technical Work Group to:
 - a. Review the water use reporting process for agricultural irrigation,
 - b. Modify the ranges for accepted water use by crop type, if needed for greater accuracy,
 - Evaluate various quality assurance criteria and approaches for confirming crop type and acreage, and
 - d. Assess the adequacy of the surface water and groundwater monitoring network in providing confirmation of the aggregate or cumulative withdrawal of groundwater and surface water for agricultural irrigation.
- 2 This workgroup should also periodically review advances in technology for measuring and estimating water use and water use reporting and provide recommendations to the ANRC on incorporating these advances in their water use reporting programs.
- 3. Finally, ANRC should continue and improve awareness and education programs, in conjunction with Conservation Districts, to explain and promote the water use reporting program currently in place and any future improvements.

Table 3-1. Comparison of Issues and Recommendations in the 1990 AWP and the 2014 AWP

Issues from 2014 Plan

Groundwater Issue: Water levels in the aquifers are declining and we need to move toward sustainable use of the groundwater.

Issues from 1990 Plan

- A1. Groundwater levels are declining in the alluvial aquifer in the Grand Prairie Region and the area west of Crowley's Ridge.
- A2. Water levels are declining in the Sparta Sand aquifer of the Gulf Coastal Plain.
- G1. Cities and towns along Hwy. 67 from Searcy to near Arkadelphia presently lack, or will in the future, adequate water supplies to support economic expansion because groundwater supplies are limited, to nonexistent, along the corridor.

Recommendations from 1990 Plan

- A1. The most efficient response to the problem of declining water levels is conversion from groundwater to surface water, and employment of a conjunctive use management strategy.
- A2. The most efficient response to the problem of declining water levels is conversion from groundwater to surface water, and employment of a conjunctive use management strategy.
- G1. Develop and implement a master plan for distribution of water from existing reservoirs and develop new reservoirs.

Recommendations from 2014 Plan

- Groundwater Recommendation 1: ANRC
 will seek the authority to purchase, install,
 and read meters on selected alluvial wells
 including the authority to lease or
 condemn sites for meter installation
- Groundwater Recommendation 2:
 Develop and implement conjunctive water management strategies, based on storing surface water during months when excess water is available for use during the summer irrigation months when excess surface water is not available.

 Groundwater use would supplement surface water use, rather than being the primary irrigation water source.
- Groundwater Recommendation 3: Encourage and increase irrigation water use efficiency through integrated irrigation water management and conservation practices over the next decade.
- Drought Recommendation 1: Develop a coordinated drought contingency response network among state and federal agencies, drinking water utilities, organizations, and institutions, and the private sector for alerting the public about impending droughts, sharing consistent messages and information, and providing information on voluntary conservation measures to reduce water use.
- Drought Recommendation 2: Seek funding and ensure stream gaging networks throughout the state are adequate to provide streamflow information needed to make informed decisions about impending or advancing droughts statewide and within each planning region.

Drought Issue:
Planning for allocation
during drought is
needed before
droughts occur.

Table 3-1. Comparison of Issues and Recommendations in the 1990 AWP and the 2014 AWP

•		
Issues from 2014 Plan	Issues from 1990 Plan	Recommendations from 1990 Plan

Excess Water Issue: The statutory definition of excess water should be based on sound science.

- B1. Water use along Bayou Meto and Plum Bayou far exceeds the supply during irrigation season.
- B2. Water demand in the Boeuf Basin and Bayou Bartholomew exceeds available supplies during irrigation season.
- B3. Use of excess surface water will be required in order to reduce current groundwater pumpage by approximately 20 percent and to provide for future needs. Authorization of such use must be provided in a manner so as to negate adverse impacts to instream needs.
- D1. Water may not be available from natural flows for direct diversion from surface sources for irrigation in dry years.
- D2. The authority to manage excess surface water at the local level is ambiguous.
- D4. Over 26 million AF of water is being allowed to flow downstream due to the 25 percent limit on water transfer in Act 1051.
- I1. Proposals to develop surface water supply sources are often in conflict with efforts dedicated to the preservation and conservation of significant streams so they can be enjoyed by present and future generations.
- 12. Water resources development projects often have significant environmental effects.

B1. Water use along Bayou Meto and Plum B1. Excess water should be provided from

- the Arkansas River to Plum Bayou and Bayou Meto.
- B2. Excess water should be provided from the Arkansas River to Boeuf Basin and Bayou Bartholomew.
- B3. Implement Rules and Regulations as defined in Appendix A of 1990 AWP
- D1. Storage reservoirs, both public and private, should be constructed and present storage reallocated to provide low flow augmentation during the irrigation season. Incentives under a federal program should be provided for on-farm storage.
- D2. Rules and Regulations are recommended for adoption to implement provision for authorization of nonriparian use of surface water.
- D4. Increase the percentage that may be transferred to 75 percent.
- I1. If it is determined to be in the interest of the State to construct impoundments, a recreation/conservation purpose should be included.
- 12. Water resources development projects can and must be designed to minimize takeoffs between economic and environmental concerns.

Recommendations from 2014 Plan

- Excess Water Recommendation 1: Remove the 25 percent limitation for estimating excess water available for nonriparian transfer and conduct scientific studies to determine what proportion of the total available water is seasonally appropriate to satisfy the required uses specified in statute by major basins and subbasins in each planning region, beginning with the East Arkansas WRPR, and followed by, in order, South-central, West-central, North, and Southwest Arkansas WRPRs. This study should be conducted in consultation with the AGFC and ADEQ.
- Excess Water Recommendation 2: Continue to use the Arkansas Method (Filipek et al. 1987) in estimating the proportion of total available water needed to satisfy fish and wildlife flow needs in estimating excess water for nonriparian withdrawals and transfers. Through adaptive management, the Commission will evaluate and assess alternative methods for estimating fish and wildlife flows, or other instream needs and uses, as more accurate, scientifically reviewed, and defensible methods become available.
- Excess Water Recommendation 3: Engage stakeholders in the planning regions through an open and transparent process as the scientific study is being conducted by ANRC and as better scientific approaches become available and are proposed for use.

Table 3-1. Comparison of Issues and Recommendations in the 1990 AWP and the 2014 AWP

CCLIAC .	from	ี 201	Λ D	an

Development Projects Issue: Financing and funding for water development projects, repair of failing infrastructure and PL566 structures, additional flood control projects, assistance, and education support.

Issues from 1990 Plan

- E1. The ASWCC lacks the authority to require conformance with the Plan.
 Federal Water Policy requires cost sharing by local sponsors, who in turn request State assistance. The need exists to prioritize these projects.
- E2. Some levee and drainage districts fail to perform proper maintenance after the debt service is paid off.
- H1. Impaired drainage and floodwater damages are continuing to greatly limit agricultural production in Arkansas.

Nonpoint Source Issue: Water quality is affected by nonpoint sources of pollutants and nonpoint source management projects need State funding in addition to federal funding.

- C1. Much of the problem in water-quality degradation is from NPS pollution.
- G2. Many areas along the Arkansas River have insufficient sources of water for municipal, industrial, and agricultural uses. Where water is not suitable due to economic or quality reasons, the development of off-stream tributaries or off-stream storage to catch water of the Arkansas River, when quality is acceptable, should be encouraged.
- G2. Develop and implement a master plan for distribution of water from the Arkansas River and existing reservoirs. Develop new reservoir sites as needed to satisfy projected needs.

Recommendations from 1990 Plan

- E1. Amend Act 217 of 1969, as amended, to require State Water Plan compliance and provide for a mechanism for establishment of a State priority when assistance is requested and/or required under a Federal program.
- E2. Oversight control to ensure proper operation and maintenance should be authorized at the State level.
- H1.The ASWCC should cooperate with federal agencies and local communities to provide appropriate assistance in addressing the adverse impacts on agricultural production caused by impaired drainage and floodwaters.
- C1. The ASWCC, in cooperation with the Conservation Districts and with technical assistance provided by the USDA Soil Conservation Service, should initiate an aggressive information and education program to encourage implementation of Best Management Practices (BMPs) to curtail nonpoint sources of pollution.

Recommendations from 2014 Plan

- Development Projects Recommendation 1:
 As an initial step, authorize an additional
 \$300 million under the Water, Waste
 Disposal, and Pollution Abatement Facilities
 General Obligation Bond Program at the
 appropriate time. Additional authorization
 will be requested as needed to finance and
 refinance the development of these water
 resources projects.
- Development Projects Recommendation 2: ANRC will seek the authority to merge water and sewer systems where necessary in order to bring them into economic viability.
- NPS Recommendation 1: Propose legislation to designate funding specifically for financing NPS pollution management programs and implementing NPS management practices.
- NPS Recommendation 2: ANRC will collaborate with ADEQ and AGFC through the biennial CWA Section water quality review processes, and the triennial water quality criteria review to determine attainment or nonattainment of water quality standards in streams and identify the sources and causes of nonattainment.
 - Streams impaired because of NPS pollution will be considered as priority streams for restoration through the NPS management program.
- Streams currently attaining water quality standards in priority watersheds will be considered for protection through the NPS management program.

Table 3-1. Comparison of Issues and Recommendations in the 1990 AWP and the 2014 AWP

Issues from 2014 Plan	Issues from 1990 Plan	Recommendations from 1990 Plan	Recommendations from 2014 Plan
			 NPS Recommendation 3: Study whether nutrient management plans should be required outside current nutrient surplus areas. NPS Recommendation 4: Leverage funding from multiple sources such as Source Water Protection under the Safe Drinking Water Act, administered through the ADH, to address NPS pollution in watersheds with drinking water sources.
Awareness Issue: The need for public awareness, outreach, and education are critical for water planning in Arkansas.	 J1. The public is generally unaware of the nature of problems associated with effective conservation and use of our water resources. Many individuals with legal and planning responsibilities at the local level are not trained in resource management. 	 J1. Legislative and Executive action is needed to provide finances and personnel for the development of a statewide information, education, and awareness program that will train local authorities and managers about water issues and their broad implications for resources planning. 	 Awareness Recommendation: The ANRC will collaborate with the Arkansas Water Foundation, the Arkansas Association of Conservation Districts, the U of A Cooperative Extension Service, and others to develop and disseminate public information on water conservation practices being implemented by agriculture in Arkansas, advances in water
			conservation technology that are emerging, trends in groundwater and surface water use, and the contributions of agriculture to the economy, food security, and quality of life in Arkansas.

Table 3-1. Comparison of Issues and Recommendations in the 1990 AWP and the 2014 AWP

Issues from 2014 Plan

Infrastructure Issue: Public water and wastewater infrastructure is failing, and in need of repair and replacement throughout Arkansas.

Issues from 1990 Plan

- F1. Local governments participating with the federal government in water resource development projects must enter into a local cooperation agreement (LCA) that requires varying rates of cost sharing that cannot be provided without assistance from some source. Current State financial assistance programs contain restrictions on type of assistance available to local sponsor and type of water resources projects that may be funded.
- F2. Most water and wastewater projects across the State cannot be financed by loan funds only. To keep water and sewer rates within acceptable levels, sources of grant or deferred loan funds must be established and maintained.
- F3. Arkansas communities need an estimated \$460 million to construct currently needed sewage collection and treatment facilities. The Farmers Home Administration – the traditional source of loan funds for both water and sewer projects – has insufficient funds to fill this need.
- G3. The most extensive groundwater problem in the Interior Highlands of Arkansas is the naturally occurring low yield of water and poor quality in shallow formations.

Recommendations from 1990 Plan

- F1. Authorize a water resources development project funding program under the authority and management of ASWCC specifically for the purpose of assisting local entities in meeting their obligations under the terms of LCA(s).
- F2. Additional funding of the Water Development Fund and the Water Sewer and Solid Waste must be appropriated. Therefore, amending Act 81 of 1957 to set the minimum dam permit fee at \$25.00; raising the fee per AF to \$0.05; and establishing application review fee of 1 percent of estimated constructed costs with a minimum fee of \$100.00, and a maximum fee of \$500.00 will increase revenues to the fund by \$21,000/year.
- F3. Implement issuance of bonds under the Arkansas Waste Disposal and Pollution Abatement General Obligation Bond Program, which was passed by the legislature in 1947.
- G3. There are two solutions to this problem: Drill deeper wells into high yielding aquifers such as the Roubidoux and Gunter, in areas where the aquifers are available and contain good quality water; and development of surface water resources by importation or construction of impoundments.

Recommendations from 2014 Plan

- Infrastructure Recommendation 1: Public entities operating water and wastewater infrastructure and flood control and drainage projects should develop sustainability plans that evaluate:
 - Current infrastructure status and historical trends in status;
- Needed infrastructure repairs, replacement, and maintenance and associated schedules;
- Federal and state programs available to support infrastructure projects; and
- Contingency plans, including the potential for regionalization or privatization (private water wells, septic systems, decentralized systems, etc.), if the utilities are assessed to be unsustainable.
- Infrastructure Recommendation 2: Receivership proceedings should be initiated for public water and wastewater providers that have defaulted on loans.
- Infrastructure Recommendation 3:
 Training programs should be developed for utility boards of directors on sustainability planning and how these plans relate to the operation of their facilities and infrastructure. Utilities that submit a sustainability plan with funding applications could receive lower rates on loans.

Table 3-1. Comparison of Issues and Recommendations in the 1990 AWP and the 2014 AWP

Issues from 2014 Plan	Issues from 1990 Plan	Recommendations from 1990 Plan	Recommendations from 2014 Plan
Reservoir Issue: Reallocation of water storage in USACE reservoirs is needed to increase available water for existing and new uses.			 Reservoir Recommendation: Reallocation of water storage in USACE reservoirs, based on the revised 1977 Water Supply Act guidance manual, be sought if there is a documented need for additional water for domestic, municipal, or industrial water supply.
Conservation Issue: Tax incentives and credits are needed to encourage the implementation and management of integrated irrigation water conservation practices.	D3. Water conservation needs to be more aggressively used as an alternative to development to meet future needs.	D3. Water conservation methods must be encouraged by providing both education about current methods and technical assistance from the ASWCC and Conservation Districts. Conservation plans should be developed and implemented as a condition of eligibility for commission programs.	 Conservation Recommendation 1: Determine the current irrigation water use efficiency for various crops and subwatersheds in the East Arkansas WRPR and establish a goal or target efficiency to be achieved for integrated irrigation water management and conservation practices. Conservation Recommendation 2: Evaluate the effectiveness of the existing tax credits and incentives and, based on this assessment, consider: Increasing the percentage of the total project cost available for tax credits, based on applicants improving their irrigation water use efficiency compared with the goal or target efficiency; Extending the period for claiming tax credits for implementing water conservation practices; Increasing the annual cap on tax credits so additional tax credits can be claimed; and Tracking the acreage on which water conservation practices have been implemented along with the tax credits.

Table 3-1. Comparison of Issues and Recommendations in the 1990 AWP and the 2014 AWP

Issues from 2014 Plan	Issues from 1990 Plan	Recommendations from 1990 Plan	Recommendations from 2014 Plan
 C2. Saltwater intrusion is a significant problem in several aquifers of Arkansas as described in Section V.B. Saltwater contamination also occurs where oil, gas, and water wells penetrate saltwater aquifers that are under artesian pressure. 		 C2. Halting the migration of saltwater into freshwater zones can be accomplished by reducing groundwater withdrawals in the areas where migration is occurring, and by better well construction and abandonment practices. Ideally, groundwater withdrawals should be guided by a sustained yield pumping strategy. Existing regulatory agencies should be given continued support. Federal regulations will likely be imposed if the State does not act. 	
	 C3. Poorly constructed and abandoned oil, gas, and water wells threaten the water quality of our groundwater throughout the State. 	 C3. Programs to encourage location of abandoned wells should be implemented to lessen groundwater contamination potential from surface runoff. County- wide projects should be given financial and technical assistance. 	
	• E4. Act 14 of 1963 treated the Soil and Water Commission and gave it powers of the old Water Conservation Commission under Act 81 of 1957. Both these acts have been amended several times and are in some instances, in conflict with themselves.	E4. Acts 217 and 81 should be updated to resolve any conflicts and to reflect the current status of administrative law.	

Table 3-1. Comparison of Issues and Recommendations in the 1990 AWP and the 2014 AWP

Issues from 2014 Plan

Supporting Issue 1: The accuracy of water use reported for agricultural irrigation has been questioned because the water use is not measured or metered.

Issues from 1990 Plan

 E3. Crop data reporting from several agencies are not in agreement. There are at least four different sources of crop data. In addition, water use reporting is required by legislation; however, the accuracy of the data being reported is questionable.

Recommendations from 1990 Plan

E.3 There must be a greater degree of accuracy in crop and water use data.
 Additional technical assistance and flow measurement equipment is needed in order for Conservation Districts to provide the level of service necessary to attain the degree of accuracy required. A penalty should be assessed for not reporting a water use of more than 5 AF (1,629,500 gallons).

Recommendations from 2014 Plan

- Supporting Recommendation 1: ANRC should form an Agricultural Irrigation Science Technical Work Group to:
- Review the water use reporting process for agricultural irrigation.
- Modify the ranges for accepted water use by crop type, if needed for greater accuracy.
- Evaluate various quality assurance criteria and approaches for confirming crop type and acreage.
- Assess the adequacy of the surface water and groundwater monitoring network in providing confirmation of the aggregate or cumulative withdrawal of groundwater and surface water for agricultural irrigation.
- Supporting Recommendation 2: This workgroup should also periodically review advances in technology for measuring and estimating water use and water use reporting and provide recommendations to the ANRC on incorporating these advances in their water use reporting programs.
- Supporting Recommendation 3: ANRC should develop awareness and education programs, in conjunction with Conservation Districts, to explain and promote the water use reporting program currently in place as well as future improvements.

4 Implementation

Water is the lifeblood of the Arkansas economy, so sustainable management, conservation, and development of Arkansas's water resources is critical to the State. Water planning for current and future needs will continue. The AWP Update builds on successes of the past, and more importantly, it calls on water managers, decision-makers, and members of the general public alike to seize future opportunities.

4.1 Implementation Progress

Since the completion of the 1990 AWP, the State, through the ANRC, has seen progress and successes in implementing the Plan. While it is important to recognize that the large-scale water projects have progressed slowly because of the many obstacles that often face projects today, there have been some notable successes. The following summary provides an update of progress that has been made and milestones that have been met on the priority water development efforts over the course of the last 24 years.

In the 1990 AWP, 28 policy issues were identified, vetted, and recommendations adopted for the following policy areas—groundwater depletion (two issues), surface water depletion (three issues), water quality (four issues), water management (four issues), legal and institutional considerations (four issues), financial assistance needs for water development, (four issues), drinking water-supply deficiencies (three issues), impaired drainage and floodwater damages (one issue), environmental and recreational considerations (two issues), and public awareness of resource problems (one issue). Significant implementation successes have been accomplished or are near completion, as described below.

4.1.1 Grand Prairie Area Demonstration Project

Issue A.1 in the 1990 AWP concerned the decline of groundwater levels in the Grand Prairie region and the area west of Crowley's Ridge. The Grand Prairie Area Demonstration Project (GPADP), when operational, is expected to slow the decline of groundwater in the aquifers in the Grand Prairie critical groundwater area by providing surface water for crop irrigation. In 1991, the U.S. Congress empowered USACE to develop the GPADP in cooperation with the ANRC, NRCS, and White River Irrigation District (WRID) to find and implement an effective solution to the problem of groundwater resources depletion.

The GPADP includes construction of new reservoirs on approximately 8,800 acres of farmland providing more than 1,000 farmers in Arkansas, Lonoke, Monroe, and Prairie counties with surface water for irrigation. The project will be 50 miles in length, and, when completed, will double the current amount of usable above-ground water storage in the form of reservoirs and tailwater recovery systems. The GPADP also includes a pumping station on the White River at DeValls Bluff that is capable of lifting 1,640 cubic feet per second from the river's flow during specific times of the year to help keep the on-farm reservoir network supplied. On an as-needed basis, farmers will use this water to irrigate their crops or flood their rice fields. Water that does not infiltrate or evaporate will be recovered by a ditch and pipeline system and pumped back to the reservoir.

The water supply portion of the project is projected to cost \$400 million for the primary delivery system and another \$100 million for on-farm infrastructure requirements (Carmen 2014). About \$132 million—\$99 million in federal money and \$33 million in State and local funds—has already been spent. The project is about 23 percent complete.

White River – Photo courtesy of USDA-NRCS

⁵ D. Carmen, Personal Telephone Correspondence, *RE: Cost and Operations of the Grand Prairie Area Demonstration Project* (May 2014).

4.1.2 Sparta Recovery in Union County

Issue A.2 in the 1990 AWP concerned the decline of water in the Sparta aquifer. The Sparta aquifer is an important source of groundwater for southeastern Arkansas and northern Louisiana. It is the only viable aquifer in Union County, Arkansas. Twenty-nine municipalities and rural water associations, and eleven major industries in Union County, used the Sparta as a raw water source. A hydrogeologic model of the Sparta aquifer in Union County, developed in 1999 by the USGS, estimated that in order to restore aquifer levels to the top of the Sparta Sand, groundwater usage in Union County would need to be reduced to about 28 percent of 1997 rates. This represents a reduction from about 21 million gallons per day (mgd) to about 6 mgd.

In the late 1990s, stakeholders throughout the county—industry, economic development leaders, elected officials, private citizens, the Arkansas Farm Bureau, the Arkansas Poultry Federation, Rural Water Associations, the Union County Conservation District, State and federal agencies, and others—coalesced to write, support, and enact legislation authorizing the State's first and thus far only county water conservation board. The Union County (Arkansas) Water Conservation Board's (UCWCB) first project was to provide Ouachita River water as an industrial supply alternative to the rapidly depleting Sparta aquifer. This may be the country's only project in which residents wrote the law that created the State's first critical county conservation board, allowed themselves to be taxed once, then voted an additional temporary sales tax on themselves to conserve the underground Sparta formation aquifer, and provide an abundant supply of water for future growth.

The UCWCB determined that providing an alternative surface water source to three major industries offered the most feasible, fastest, and most cost-effective way to reduce groundwater consumption. The UCWCB immediately undertook construction of the \$65 million Ouachita River Alternative Water Supply Project. Public hearings throughout the county incorporated stakeholders' input, and built consensus that resulted in unopposed legislation, even though Act 1050 of 1999 authorized a conservation fee on Sparta water consumers.

The project consists of a 65-mgd intake structure and pump station at the Ouachita River, a clarification

Ouachita River Alternative Water Supply Project intake structure in Union County near El Dorado – Photo courtesy of Union County Water Conservation Board

facility, and a pump station and storage tank approximately 9 miles from the Ouachita River. Over 20 miles of pipeline connects the infrastructure to deliver clarified river water to industrial customers. Converting three of the industries from ground to surface water reduced aquifer water consumption by over 6 mgd, allowing for aquifer recharge, halting water quality degradation trends, and conserving the Sparta for current and future users. In planning for Union County's future economic development needs, the project has 10-mgd excess capacity and is expandable to provide an additional 19 mgd.

The first phase was completed in 2002 and serves the project's first and largest customer; Union Power Partners (UPP). UPP designed, built, and paid for the \$52 million water infrastructure during construction of its power plant. Upon completion of the water infrastructure, UCWCB reimbursed UPP with \$14 million for the incremental cost of doubling the facility's capacity. UPP then deeded the entire \$52 million facility to Union County; a gift of historic proportion. The second phase was completed in 2005, serving the clarified water to industrial customers.

The success of the Ouachita River Alternative Water Supply Project is outstanding. Between October 2004 and April 2013, groundwater levels have risen in all eight monitoring wells from about 10 feet to almost 70 feet. Water levels in three monitoring wells (named the Smackover, Spencer, and Union) are above the top of the Sparta aquifer.

4.1.3 Bayou Meto Water Management Project

Issue B.1 in the 1990 AWP addressed water in Bayou Meto. The issue was that water use exceeded supply in the irrigation season. The Bayou Meto Water Management Project is planned to divert Arkansas River water in order to convert nearly 268,000 irrigated acres from groundwater to surface water. Major features of the project include four pump stations, 107 miles of canals, and 464 miles of underground pipelines. The project area includes portions of Lonoke, Prairie, Arkansas, and Jefferson counties. The project will also provide increased flood control and enhanced waterfowl management. The water supply portion of the project is projected to cost \$550 million for the primary delivery system (does not include any on-farm improvements).

This project was first funded for construction in 2010. To date, a total of \$86 million has been invested in the project (\$65 million federal; \$21 million nonfederal), and the project is 13 percent complete. Construction continues on both pump station structures and is about 89 percent complete for Pump Station No. 1. Little Bayou Meto pump station is about 79 percent complete.

Big Piney Creek - Photo courtesy of ANRC

4.1.4 Plum Bayou Project

Issue B.1 in the 1990 AWP concerned the lack of sufficient water in Plum Bayou during irrigation season. The Plum Bayou Project pumps water from the Arkansas River and conveys it into the bayou for farmers to use to water their crops. The Plum Bayou project was completed in 1993 at a cost of \$977,000 and serves 14,200 irrigated acres. It consists of three pumps with a total capacity of 79,500 gallons per minute (gpm), three road crossings, an irrigation canal, 10.5 miles of underground pipelines, and 77 flow meters. The sponsors are NRCS, ANRC, Lonoke

County Conservation
District, Pulaski County
Conservation District, and
the Plum Bayou Irrigation
District (USDA 2014). The
success of the Plum Bayou
project can partially be
attributed to the relative
low capital cost that is a
result of efficient and
innovative utilization of
natural features versus
infrastructure.

Large pipes convey Arkansas River water to Plum Bayou for farmers to irrigate their crops – Photo courtesy of ANRC

Other successful irrigation projects that are similar to Plum Bayou are Point Remove Wetlands Reclamation and Irrigation District, Walnut Bayou Irrigation Project, and Little Red River Irrigation Project.

4.1.5 Agricultural Water Conservation

Issue D.3 in the 1990 AWP addressed water conservation as an alternative to development to meet future needs. Since then, farmers in some of the critical groundwater areas were the first to experience the effects of groundwater decline—dry wells. In order to keep farming, these farmers began irrigating with surface water, but not water diverted from a river or stream. Rain water stored in on-farm reservoirs is used and reused for crop irrigation. Reservoirs capture and store the water for use. Tailwater recovery systems allow for reuse of the water. Not having to rely on groundwater for irrigation is the obvious benefit of onfarm storage and reuse. Other benefits are decreased pumping costs, lower fertilizer cost, and water quality benefits of not allowing runoff of irrigation water into streams. As an example of potential cost savings, Henry et al. (publication pending) report that the cost of rice irrigation in Arkansas averages about \$44 per acre in fields with surface water sources and about \$75 per acre in fields with groundwater sources.⁷

⁷ G. Henry, E. D. Vories, M. M. Anders, S. L. Hirsh, M. L. Reba, K. B. Watkins, and J. T. Hardke, *Characterizing Irrigation Water Requirements for Rice Production from the Arkansas Rice Research Verification Program*, UNIVERSITY OF ARKANSAS RICE RESEARCH AND EXTENSION CENTER, (2013, publication pending).

⁶ United States Department of Agriculture: Natural Resources Conservation Service, COMPLETED IRRIGATION PROJECTS, http://www.nrcs.usda.gov/wps/portal/nrcs/detail/ar/water/?cid=nrcs1 42p2_034918 (last visited May 21, 2014).

On-farm reservoirs increase water security and mitigate the impact of drought – Photo courtesy of USDA-NRCS

4.2 2014 AWP Implementation

Ongoing review and update of the Plan is essential to ensure that we, as a state, successfully evaluate emerging issues and prepare ourselves to meet future challenges. The AWP priority I&Rs were presented with detailed issue-specific implementation plans that are addressed to a wide variety of agencies, organizations, and decision-makers. Thus, implementation of the AWP recommendations, subject to changing needs, will require a cooperative and coordinated effort. In addition to the issue-specific implementation plans, there are broader, overarching actions that can make the water planning process more likely to succeed. These actions are stakeholder involvement, scheduled review and updates of the AWP, and public education.

The AWP is the policy framework through which the State manages its water resource programs. As water is a shared resource and vital to many State programs, implementation will require the cooperation of those State agencies that have a constitutional or statutory authority or responsibility dependent on water resource management to achieve their missions; primarily ANRC, ADEQ, AGFC, Agriculture, and ADH. These agencies will form a water policy work group to provide oversight and policy guidance to ANRC on the implementation of AWP recommendations. Communication and information sharing will aid the directors of these agencies in allocating their agency resources to implement components of the AWP.

The water policy workgroup would assist the ANRC in assessing the AWP recommendations for economic, technical, environmental, and political feasibility; developing rulemaking initiatives; and ensuring cooperation and coordination of teams and framework for moving AWP recommendations into actions.

4.2.1 Stakeholder Involvement

Public input is vital to any planning process. The AWP planning process has offered Arkansans with a unique opportunity to help decide how the State's water resources should be managed. The AWP has been significantly enhanced by the willingness of the Arkansas community to participate in its development, and to share their thoughts, ideas, and perspectives. A successful planning process is a process that leads to implementation, which most often occurs with broad stakeholder support. Three types of stakeholder groups are envisioned for implementing the 2014 AWP:

- WRPR Groups —These groups were established during the AWP Update process. They consist of people who volunteered to participate based on their interest in water planning in their area of the State. The ANRC will continue to foster these interests involving these groups in reviewing reports, information, proposals, or projects that affect their areas.
- Issue-specific Implementation Teams—These teams will be composed of appropriate State agency staff and stakeholders who express an interest in working on specific issues. These teams will be tasked with following through on the implementation plan presented with each AWP priority issue.
- A Science and Technical Advisory Panel—The panel will include technical experts from ANRC, AGFC, ADEQ, USGS, and U of A Water Resources Center who will be invited to serve on this panel. The panel will work with, but independent of ANRC, to provide peer review of water use data, modeling, and all science-based components of the AWP.

4.2.2 Scheduled AWP Updates

In Arkansas, the ANRC has a recognized and valuable program that systematically monitors, collects, analyzes, and reports updated estimates of water use on a 5-year recurring report cycle. The 2014 AWP is based on a comprehensive planning process that addresses all core water planning elements. However, a comprehensive approach to the planning process is not necessary for the production of a valuable water plan update. For example, updates to irrigation application rates for the purpose of revising and refining water demand projections may be used in a limited water plan update. Due to the inherently deliberate nature of water policy development, both at a State and federal level, a continuous process of water policy review, evaluation, and development, as necessary to implement goals included in the most recently adopted AWP, will be valuable for the positive future of the State.

ANRC plans to update the AWP every 5 years. ANRC will continue to work with stakeholders, conduct region-specific water supply studies, and provide revised estimates of water use by sector, by water user, and by region with each updated plan.

For AWP updates associated with the national census (draft census results are routinely released in April-May of year after census, with the next release being in 2021), a more comprehensive planning effort is warranted. The census-based AWP Update should include:

- An update to population projections and updates to water demand projections;
- 2. Updates to water supply availability evaluations;
- 3. Updates to gap analyses; and
- 4. Updates, at a minimum, to cost information for water management strategies included in previous plans that are yet to be implemented.

4.2.3 Public Education and Awareness

During the 2014 AWP Update process, the ANRC has actively involved the public and provided information on the progress of the AWP. Public awareness and appreciation for the AWP is a critical part of implementing the recommendations in the Plan, particularly when implementing recommendations that require additional taxes, fees, or behavioral changes. As was shown in Union County with the Ouachita River Alternative Water Supply Project, when the public understands and concurs with the purpose and need for a project, they will vote to pay for it. Public involvement will include continuing presentations for groups that request them, developing and maintaining an interactive engaging website, and distributing newsletters on a quarterly basis.

5 General Description of the State

This section provides a general description of the State to serve as background for updated discussion and analysis of State water supplies, water use and demand, and alternatives for managing water resources in Arkansas. It includes general descriptions of surface and groundwater resources and the associated physiology, geography, geology, ecoregions, climate, and land uses found within the State. It also includes general descriptions of federal and State laws, regulations, and programs that deal with water resources, as well as a listing of federal, State, and local governmental and nongovernmental institutions that are involved in water resources management.

5.1 Physical Environment

Understanding the physical environment of the State is important to recognizing the role that water plays. There are complex interactions between the geology, climate, hydrology, and the imprint of the people that reside here.

5.1.1 Landforms and Geology

Arkansas is divided into two physiographic provinces, whose boundaries divide the State into nearly equal parts – the Interior Highlands and the Gulf Coastal Plains (Figure 5-1). The Interior Highland province includes the part of Arkansas that lies northwest of a line passing from a point on the Missouri boundary near the northeast corner of Randolph County southwestward through Little Rock to a point near Arkadelphia and thence nearly due west to the Oklahoma border. The Gulf Coastal Plain province is located in the southwestern portion of the State, and includes the western Gulf Coastal Plain and the Mississippi River Valley alluvial plain of eastern Arkansas.

ANRC - Indian Creek Cave
- Photo courtesy of ANRC

The Interior Highlands occupy about 25,155 square miles, or 48 percent of the total area of the State. They comprise the Ozark Plateaus with karst terrain and

erosional topography; the Boston Mountains, a northward-facing escarpment that consists of uplifted sedimentary formations, and the Ouachita Mountains consisting of narrow ridges and valleys of folded sedimentary strata. Within these major mountain divisions are the Arkansas River Valley, which includes the Arkansas River Valley alluvial strata, and the prominent isolated mountain structures such as Mount Magazine, Mount Nebo, and Pinnacle Mountain, commonly referred to as "monadnocks."

The Interior Highlands are characterized by hilly to mountainous terrain (Foti 2008), where elevations range from 250 to 2,753 feet above sea level making it suitable for construction of large reservoirs. Rivers and streams in this physiographic region tend to be relatively fast-moving with steep slopes. Precipitation runs off quickly, which can result in flash flooding that typically lasts less than one day. The Gulf Coastal Plain occupies about 27,370 square miles, or about 52 percent of the total area of the State. It is a southward-sloping, hilly terrain, of unconsolidated sedimentary strata that merges into the Mississippi River Valley alluvial plain, a relatively flat topographical plain with underlying clay, silt, and sand strata.

The Interior Highlands and the Gulf Coastal Plains are divided by the "Fall Line," a prominent geophysical line generally identified as the line between the consolidated Paleozoic formations of northwestern Arkansas, and the unconsolidated Cretaceous and Quaternary sand and clay strata of southeastern Arkansas.

⁸ T. Foti, *The Natural Divisions of Arkansas*, Arkansas Natural Heritage Commission, 6 (2008).

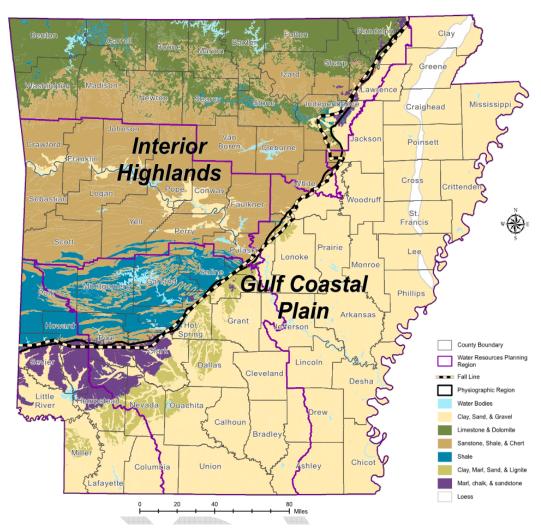


Figure 5-1. General Geology of Arkansas

The Gulf Coastal Plain is characterized by very little elevation variation (90 to 320 feet above sea level). Therefore, the topography in this area is not suitable for building large reservoirs. Rivers and streams in this flat terrain tend to move slowly and form meandering channels. The lack of elevation change in this area results in slower runoff where precipitation is more

Arkansas River Bank – *Photo courtesy* of *Arkansas Natural Heritage Commission*

likely to soak into the ground or lead to flooding when the ground is saturated. The Gulf Coastal Plain is further divided into the West Gulf Coastal Plain and the Mississippi Alluvial Plain

provinces. The Arkansas River and Bayou Bartholomew separate the West Gulf Coastal Plain from the relatively recent stream deposits of the Mississippi Alluvial Plain. Geologic formations comprising the Gulf Coastal Plain in Arkansas are contained within the Mississippi Embayment, which is a low-lying basin that is filled with Cretaceous age to recent sediments. These formations consist mainly of a thick sequence of sand, silt, and clay, with local occurrences of limestone, chalk, and lignite, that are exposed at the surface in bands of varying width that roughly parallel the fall line before dipping gently beneath the surface to the south and southeast. Fresh groundwater in the Mississippi embayment can be found in alternating formations of sand, silt, and clay and in alluvial deposits that provide significant sources of water supply.

5.1.2 Climate

Strongly influenced by the Gulf of Mexico, the climate of Arkansas is humid sub-tropical and is characterized by long summers, relatively short winters, and a wide range in temperatures. Summaries of temperature, precipitation, and evaporation data are presented below, along with discussions of factors that influence Arkansas's climate and long-term climate trends in the State.

Average annual temperatures vary little over the State. However, extremes in temperature can vary from winter lows around zero degrees Fahrenheit (°F) to summer highs above 100 °F. The average growing season ranges from 180 days in the northwest to more than 230 days in the southeast (National Oceanic and Atmospheric Administration National Climatic Data Center [NOAA NCDC] 2013b).

Arkansas's weather is strongly influenced by the Gulf of Mexico, particularly the interaction of warm, moist air from the Gulf of Mexico to the south with dry, cool air from the Rocky Mountains to the west (Buckner 2011). Weather patterns in the State are also influenced by the Ozark Mountains and the Ouachita Mountains (NOAA NCDC 2013b). These mountains can cause moist air from the Gulf of Mexico to rise, producing rainstorms. The flat terrain of the eastern part of the State offers little friction to slow down these storms, allowing them to become stronger as they move east across the State (Buckner 2011).

Arkansas is a precipitation-dominated state. Average precipitation in the State ranges from 43 to 69 inches per year. Late spring and late fall are typically the wettest months, while August is typically the driest month. Although the State receives precipitation throughout the year, droughts of short duration are frequent and are accentuated by high evaporation rates during the growing season. Periods of multiple consecutive years of drought have occurred in Arkansas, including 1930 - 1935, 1953 - 1957, and 1963 - 1967. During these periods, large areas of the State

experienced conditions that were classified in the Palmer Drought Severity Index as severe or extreme drought for a number of consecutive months (National Weather Service 2013, NOAA NCDC 2013a). The State is currently experiencing a period of mild to moderate drought that began in 2011.

Clouds over camp – Photo courtesy of Arkansas Natural Heritage Commission

The estimated potential evapotranspiration is highest in July, and exceeds the normal precipitation 6 months out of the year. Potential evapotranspiration rates are lowest during the winter months, when sunlight and plant growth are at a minimum.

In 2007, the Arkansas Governor's Commission on Global Warming was established to evaluate the potential impacts of global warming on the State citizens, natural resources, and economy. The commission's literature review identified the following climate change effects anticipated for the State (Arkansas Governor's Commission on Global Warming 2008):¹²

- Increased incidence of severe weather events;
- Increased incidence of flooding;
- Increased incidence of drought;
- Possible saltwater intrusion into aquifers, resulting from sea level rise; and
- Changes in climatic zones.

⁹ NOAA NCDC, Climate of Arkansas, NOAA NATIONAL CLIMATIC DATA CENTER

http://hurricane.ncdc.noaa.gov/climatenormals/clim60/states/Clim_AR_01.pdf (last visited May 15, 2013).

 $^{^{\}overline{10}}$ E. Buckner, Climate and Weather, ENCYCLOPEDIA OF ARKANSAS HISTORY AND CULTURE,

http://www.encyclopediaofarkansas.net/encyclopedia/entrydetail.aspx?entryID=4579 (last visited March 15, 2013).

¹¹ NOAA NCDC, Climate at a Glance,

http://www.ncdc.noaa.gov/cag/time-series/global (last visited May 24, 2013).

¹² Arkansas Governor's Commission on Global Warming, Arkansas Governor's Commission on Global Warming: Final Report, 8-3 (2008).

5.1.3 Ecology

EPA has defined seven ecoregions within Arkansas. An ecoregion is an area containing generally similar ecosystems, as well as type, quality, and quantity of environmental resources (EPA 2013). These ecoregions represent a diverse range of habitats, from alpine meadows and mountain streams to bottomland hardwood swamps. Within these ecoregions, the AGFC has further classified 47 different land habitats within Arkansas (AGFC 2006). These habitats support a large number of plant and animal species, such that in 2002, Arkansas was ranked as the 19th most biodiverse state in the United States (Stein 2002). The second states are correctly similar to the second states

Arkansas also ranks in the nation's top tier in natural aquatic biodiversity where there are a number of aquatic and semi-aquatic species that occur only in Arkansas, i.e., endemic species. Almost 200 native fish species, 74 native species of mussel, and nearly 60 native crayfish occur in the State (Robison and Buchanan 1988, Jones-Shulz 2009, Wagner 2011). 16, 17, 18

Arkansas lakes, rivers, and wetlands also support a large number of nesting and migrating birds. Arkansas is located in the Mississippi Flyway where large numbers of migratory waterfowl and shorebirds move through the State in the spring and fall. Significant numbers make Arkansas their winter home. For instance, Eastern Arkansas hosts one of the world's largest wintering populations of mallard ducks every year and is considered the most important wintering area for these birds in North America.

Mammoth Spring Lake - Photo courtesy of ANRC

5.2 Hydrologic Environment

A general overview of Arkansas's surface water and groundwater resources is provided in this section.

5.2.1 Surface Water

There are over 87,000 miles of rivers, streams, ditches, and canals and over 515,000 acres of lakes, reservoirs, and ponds in Arkansas (Figure 5-2) (Dewald and Olsen 1994). The ADEQ has further classified these surface water bodies by water resource type (Table 5-1) (ADEQ 2009). Major rivers in the State include the Arkansas River, Mississippi River, Ouachita River, Red River, St. Francis River, and White River. Wetlands and impoundments such as lakes, reservoirs, and ponds are located throughout the State.

Table 5-1. Surface Water Resources in Arkansas (ADEQ 2009)

Water Resource Type	Quantity
Total streams	87,617 miles
Perennial streams	28,408 miles
Intermittent streams	53,465 miles
Ditches and canals	5,250 miles
Border streams	493 miles
Lakes, reservoirs, and ponds	515,635 acres

¹³ U.S. Environmental Protection Agency, Arkansas Site Status SUMMARIES. 2013A. http://www.epa.gov/region6/6sf/6sf-ar.htm (last visited July 2013).

¹⁴ Arkansas Game and Fish Commission Arkansas WILDLIFE ACTION PLAN, 1190 (ed. 2006).

¹⁵ B.A. Stein, *States of the Union: Ranking America's Biodiversity*, NATURESERVE, 27 (2002).

¹⁶ Henry W. Robison, and Thomas M. Buchanan, *Fishes of Arkansas*, UNIVERSITY OF ARKANSAS PRESS, xxi (1988).

¹⁷ Jane Jones-Shulz, *Freshwater Mussels - The Silent Sentinels*, Arkansas Natural Heritage Commission Natural News, 3, (September 2009).

¹⁸ Brian K. Wagner, *Crustaceans*, The Encyclopedia of Arkansas History and Culture,

http://www.encyclopediaofarkansas.net/encyclopedia/entrydetail.aspx?entryID=6596 (last visited October 2013).

¹⁹ T. G. Dewald and M. V. Olsen, *EPA Reach File: A National Spatial Data Resource. Washington, DC*, U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Office of Water, and Office of Research and Development, (1994).

²⁰ ADEQ, List of Impaired Waterbodies, 303(d) List (2008).

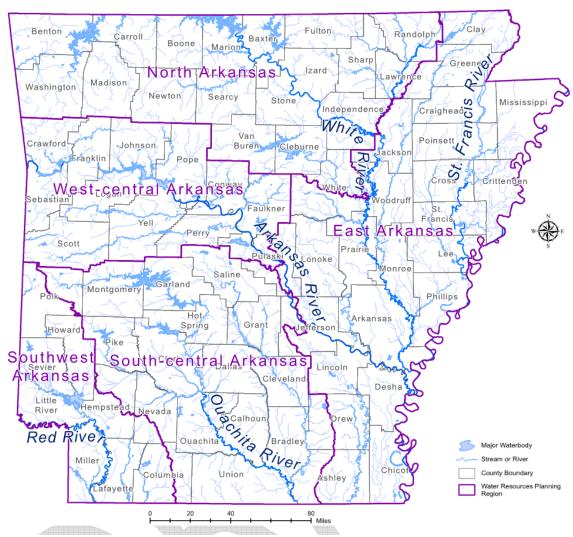


Figure 5-2. Surface Waters of Arkansas

Major Basins

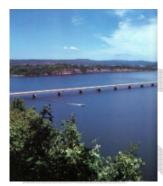
The State is comprised of nine major river basins shown in Figure 1-1:

- Arkansas River
- Bayou Bartholomew
- Bayou Macon
- Boeuf River
- L'Anguille River
- Ouachita River
- Red River
- St. Francis River
- White River

Streamflow Characteristics

Approximately 336 billion AFY of water enters Arkansas from other states through the Arkansas River, White River, and St. Francis River and their tributaries. An average of 23,520 billion AFY flows along the State border through the Mississippi River (ADEQ 2009; Howard, Colton, & Prior 1997). 21, 22 Streamflow originating in the State averages about 40 million AFY.

Four of the nine major rivers in the State have their flow regulated including the Arkansas River, White River, Ouachita River, and Red River. Streamflow is generally lowest in Arkansas streams during June through October, the period of highest water demand and lowest precipitation. Streamflow is generally highest during the winter and late spring months; the period of lowest water demand and highest


²¹ ADEQ, List of Impaired Waterbodies, 303(d) List (2008).

²² J.M. Howard, G.W. Colton, and W. L. (eds.) Prior, Mineral, Fossil-Fuel, and Water Resources of Arkansas, Arkansas Geological Commission Bulletin 24, ARKANSAS GEOLOGICAL SURVEY, 91 (1997).

precipitation. Long-term flow records in the State have been analyzed for trends. Several flow gage stations on streams in eastern Arkansas, in the Gulf Coastal Plain, exhibit declining trends while streams in the remainder of the State generally do not exhibit trends (Ludwig 1992; Czarnecki, Hays, and McKee 2002). ²³, ²⁴

Impoundments

There are approximately 110,500 impoundments in Arkansas with a combined surface area of over 515,000 acres and storage of over 15 million AF. These include 25 AGFC impoundments, 10 U.S. Forest Service (USFS) impoundments, and 25 USACE impoundments (AGFC 2010, ASWCC 1981). ^{25, 26} The majority of remaining impoundments in the State are small farm ponds (ASWCC 1981). ²⁷ Table 5-2 lists the largest reservoirs in Arkansas, along with the planning basin in which each one is located and the surface area and storage area of each one.

White River-Photo courtesy of USDA-NRCS

Wetlands

Wetlands perform important functions, including storage of floodwaters, filtering of water to improve water quality, and storage of carbon. In addition, wetlands provide habitat for a number of important bird and animal species (AGFC 2006, Ramsar Convention 2013). ^{27, 28} Several classes of wetlands exist in all parts of the State including mountaintop depressions, flats, fringe, riverine, and slope wetlands.

The majority of the State's wetlands are primarily located in the White River National Refuge and along the Cache River. In these areas, the amount of wetlands has increased since the 1990 AWP Update. Other wetland areas in the State include the Felsenthal National Wildlife Refuge, areas along tributaries of the Red River, areas within the Arkansas River Basin, mountaintop areas in the Ozark National Forest, and wet tall grass prairie areas.

Cut-off Creek - Photo courtesy of ANRC

Table 5-2. Largest Reservoirs in Arkansas

Reservoir Name	Surface Area (acres)	Volume (10 ⁶ AF)	Owner	Water Resource Planning Region
Bull Shoals Lake	45,440	3.04	USACE	North
Lake Ouachita	40,100	2.76	USACE	South-central
Greers Ferry Lake	31,500	1.91	USACE	North
Beaver Lake	28,220	1.65	USACE	North
Norfork Lake	22,000	1.25	USACE	North

²³ A.H. Ludwig, Flow Duration and Low-flow Characteristics of Selected Arkansas Streams, WATER RESOURCES INVESTIGATIONS REPORT 92-4026, U.S. GEOLOGICAL SURVEY, 13 (1992).

²⁴ J. B. Czarnecki, P. D. Hays, and P. W. McKee., The Mississippi River Valley Alluvial Aquifer in Arkansas: A Sustainable Water Resource? Fact Sheet FS-041-02, U.S. GEOLOGICAL SURVEY, 3 (2002).

²⁵ AGFC, Policies on Land Use Around Arkansas Game and Fish Commission Lakes, 12 (2010).

²⁶ ASWCC, Arkansas State Water Plan, Lakes of Arkansas, 142 (1981).

 $^{^{}m 27}$ AGFC Arkansas Wildlife Action Plan, 1190 (ed. 2006).

²⁸ Ramsar Convention, RAMSAR SITES INFORMATION SERVICE, http://ramsar.wetlands.org/Database/SearchforRamsarsites/tabid/765 /Default.aspx (last visited June 28, 2013)

Surface Water Quality

Based on the results of the 2008 statewide water quality assessment, surface water quality in Arkansas is generally good (ADEQ 2009). In the mountainous areas of the Interior Highlands, surface water quality tends to be the least impacted, with high dissolved oxygen (DO) levels and low biochemical oxygen demand (BOD) and low concentrations of nutrients. Geology in these mountainous areas tends to influence surface water alkalinity, hardness, and total dissolved solids (TDS) concentrations (Woods et al. 2004). 30

Surface water quality in the Gulf Coastal Plain, and the Arkansas River Valley in the Interior Highlands, tends to be more influenced by land use. In particular, surface waters in these areas generally have higher levels of turbidity and total suspended solids (TSS). In addition, DO levels are relatively lower, and BOD is relatively higher (Woods et al. 2004).³¹

5.2.2 Groundwater

Groundwater is an important water resource for the State and constitutes about 71 percent of the total water use in Arkansas. The groundwater report, "Aquifers of Arkansas - Protection, Management, and Hydrologic and Water-Quality Characteristics of Arkansas's Groundwater Resources" (Kresse et al. in review), divides aquifers into the two major physiographic regions of the State - Interior Highlands and Coastal Plain – and their respective subdivisions.³¹ Besides the visual differences in the mountainous upland regions as compared to extensive flat-lying, lowland, and valley areas, these two regions have differences in underlying rock type, geologic structure, and depositional history, which have produced aquifers having very different capabilities for storing and transporting underground water. These capabilities, combined with various land uses associated with both regions, have resulted in aquifers that have differing well yields and uses, water-quality conditions, and vulnerability to various land-use activities.

Major Aquifers

There are significant differences in the availability of groundwater from the aquifers present across the State. The largest and most productive of the State's major aquifers are in the Gulf Coastal Plain (Figure 5-3). Major aquifers in the Gulf Coastal Plain include the Nacatoch, Wilcox, Sparta/Memphis, Cockfield, and Mississippi River Valley alluvial aquifers.

The hydrogeology of the Gulf Coastal Plain can be described as layers of unconsolidated silt, sand, and gravel that function as aquifers yielding large quantities of water to wells. These aquifers are separated by clays that store greater volumes of water but have relatively low hydraulic conductivity, and therefore do not yield adequate volumes of water to wells.

Aquifers of the Interior Highlands are represented by a thick sequence of highly fractured, well lithified formations dominated by carbonates (limestone and dolostone) in the Ozark Plateaus, and shale and sandstone lithologies in the Boston Mountains and Ouachita Mountains. Generally, the hydrogeology of the Interior Highlands can be described as an area of consolidated formations, which yield relatively low volumes of water to wells.

The most noted aquifers within the Interior Highlands are the deep Ozark aquifer, and the Bigfork Chert and Arkansas Novaculite aquifers in the central Ouachita Mountains.

²⁹ ADEQ, List of Impaired Waterbodies, 303(d) List (2008).

³⁰ A. J. Woods, et al., Ecoregions of Arkansas (color poster with map, descriptive text, summary tables, and photographs), U.S. GEOLOGICAL SURVEY, poster (2004).

³¹ T.M. Kresse, P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeirer, D.A. Westerman, and J.M. Blackstock, Aquifers of Arkansas: Protection, Management, and Hydrologic and Geochemical Characteristics of Arkansas's Groundwater Resources, U.S. GEOLOGICAL SURVEY (In Review, 2013).

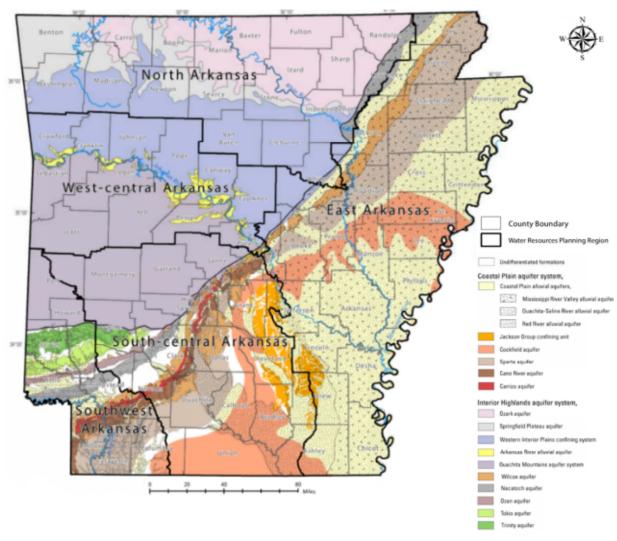


Figure 5-3. Aquifers of Arkansas

Groundwater Quality

ADEQ classifies groundwater quality in Arkansas aquifers as good to very good (ADEQ 2009). The chemistry of groundwater in Arkansas ranges from calcium bicarbonate to sodium bicarbonate water types. Groundwater in the Mississippi River Valley alluvial aquifer tends to have high iron concentrations (up to 70 milligrams per liter [mg/L]) as well as high manganese concentrations. Elevated chloride concentrations (100 to 300 mg/L) occur in many individual aquifers in the Coastal Plain associated with poor flushing of residual salinity in clayey parts of the aquifer, upwelling of high-salinity water from underlying formations, and evapotranspiration in poorly drained backswamp areas (Kresse et al. in

³² ADEQ, List of Impaired Waterbodies, 303(d) List (2008).

review).³³ High levels of radon occur in some areas of the Ozark Aquifer (ADEQ 2009, Todd, et al. 2009).³⁴

5.3 Socioeconomic Environment

The socioeconomic characteristics of Arkansas are examined by reviewing information on income and the industries that support the State's economy. Recent information is compared to information from the early 1990s, at the time of the previous AWP, to identify how things have changed since then. Understanding these changes provides insight into changes in the demand for water resources in Arkansas.

³³ T.M. Kresse, P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeirer, D.A. Westerman, and J.M. Blackstock, Aquifers of Arkansas: Protection, Management, and Hydrologic and Geochemical Characteristics of Arkansas's Groundwater Resources, U.S. GEOLOGICAL SURVEY (In Review, 2013).

³⁴ R. Todd, et al., *State of the Ground Water Report*, U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION 6, A-4 (2009).

5.3.1 Demographics

Demographic information for this summary was developed from 2010 U.S. Census data and includes population totals as well as age and racial composition of people living in urban and rural areas. This information was compared with 1990 U.S. Census data to identify population changes that have occurred since the 1990 AWP.

Population changes affect the need and demand for water resources; not just for drinking water, but also for recreation, food supply, irrigation, and aesthetics. Population demographics also affect the potential tax base to pay for water infrastructure upgrades, expansion, and repairs. The State population increased approximately 24 percent between the 1990 and 2010 Census. In addition, 4.2 percent more of the population was living in urban areas in 2010 than in 1990. Increased development and increased demands on water utilities accompanied these population increases.

The median household income in Arkansas in 2011 was \$41,302 (U.S. Census Bureau 2012c), which is 8.7 percent higher than it was in 1990 and unemployment is 1.8 percent lower than it was in 1990 (comparison made in 2011 dollars).³⁵ However, poverty levels have decreased only slightly since 1990.

War Eagle Mills - Photo courtesy of ANRC

There are a variety of industries active in Arkansas's economy. These industries vary in their demands on the State water resources. Currently, tourism and service industries are important contributors to the State economy. This was not the case at the time of the 1990 AWP. The two largest contributors to the Arkansas economy are agriculture and industry, which both rely on the State's water resources. Another important industry that affects the State water resources is resource extraction (i.e., mining and oil and natural gas production).

5.3.2 Land Use

Topography and soil type are the principal factors governing the use of land. Steep slopes and thin soils, which frequently occur in the Interior Highlands, preclude the development of cropland and favor the growth of forests, grassland, and pasture. Conversely, the flat terrain and deep soils in eastern Arkansas are conducive to agricultural uses. The majority of the State is covered by forest while approximately onethird of the State land area is used for agricultural purposes, such as pasture or cropland. The majority of the water used in Arkansas is used for crop irrigation (Funkhouser, Eng, and Moix 2008).36

Furrow Irrigation - Photo courtesy of USDA-NRCS

³⁵ U.S. Census Bureau, "Table H-8," *Median Household Income by State,* Historical Income Tables: Households, U.S. DEPARTMENT OF COMMERCE, U.S. CENSUS BUREAU (2012).

³⁶ J. E. Funkhouser, K. Eng, and M. W. Moix, Low-flow Characteristics and Regionalization of Low-flow Characteristics for Selected Streams in Arkansas, Scientific Investigations Report 2008-5065, U.S. GEOLOGICAL SURVEY, 1 (2008).

5.4 Water Resources Management

How water is used in Arkansas is governed by the legal grounding of water rights in the State and apportionment of water between states. Managing water within the legal framework is the responsibility of a number of state agencies.

5.4.1 Legal Framework

The legal framework for management and use of water resources in the State is based on State and federal case law, and rules and regulations enacted by State and federal agencies. In addition to water quality matters, federal legislation and programs also deal with other aspects of management of Arkansas water resources, such as conservation and protection of waterbodies, flood control, water-based recreation, and navigation. Arkansas is also a member of two interstate water compacts—the Arkansas Oklahoma Arkansas River Compact and the Red River Compact. Negotiation of interstate water compacts involves both federal and State agencies.

Arkansas water use law is based on the Riparian Doctrine of water rights where riparian landowners, i.e., persons owning land that abuts a waterbody, have the right to reasonable use of the water within that waterbody. The reasonable use policy means that all landowners along a stream have the right to free and unrestricted use of the stream flow, provided that their use does not negatively affect the availability of water for other riparian users.

Similarly, landowners have the right to reasonable use of groundwater under their property, as long as that use does not adversely affect the ability of other landowners to use the groundwater. The Riparian Doctrine also traditionally prohibits transport of water outside of the watershed (i.e., interbasin transfer).

Since the 1990 AWP Update, Arkansas has adopted a body of administrative laws that address water use questions previously dealt with through case-by-case adjudication. Thus, water use rights in Arkansas are more regulated than in the past. In addition to water rights related to water withdrawals and consumptive use, Arkansas regulations address water rights related to public recreational uses of surface water such as boating and fishing (ANRC 2011).³⁷

There are also local regulations that influence management of water resources. These can include zoning laws; regulations promulgated by municipalities, counties, and water and wastewater utilities; and regulations promulgated by irrigation, levee, drainage, water, and sewer districts.

5.4.2 Water Agency Authorities and Missions

Water-related State and regional agencies and their relationship to water are provided in Table 5-3. In addition, there are nonprofit organizations that are involved in water resources management in the State. As of February 2013, there are at least 20 citizen watershed groups – created to address water resources concerns - active in the State. The Arkansas Public Policy Panel is a State nonprofit organization that is involved in water resources issues as part of its mission to achieve social and economic justice. The Arkansas Urban Forestry Council promotes good urban forest policies and management principles that protect water quality. National organizations – such as Farm Bureau, Ducks Unlimited, The Nature Conservancy, Audubon Society, and Sierra Club - have chapters in Arkansas and are involved in projects to protect and improve the condition of water resources in the State. The Arkansas's Water Future Coalition is a coalition that includes State chapters of two of these national organizations - The Nature Conservancy's Arkansas field office and Audubon Arkansas.

 $^{^{}m 37}$ Arkansas Natural Resources Commission, Water Law In Arkansas, 1, 37 (2011).

Table 5-3. Water Agencies in the State of Arkansas

State Agency or Regional Entity	Relationship to Water
Arkansas Department of Environmental Quality (ADEQ)	 Water Quality Regulations and Policy
	Stormwater Management
Arkansas Department of Health (ADH)	 Water Quality Regulations and Policy
	 Source Water Protection
	 Water Management and Use
Arkansas State Highway and Transportation (AHTD)	Stormwater Management
Arkansas Natural Heritage Commission (ANHC)	 Water Management
	Water Conservation
Arkansas Natural Resource Commission (ANRC)	Funding
	 Water Quality Regulations and Policy
	 Water Development
	 Water Management and Use
	Water Conservation
Arkansas Pollution Control and Ecology Commission (APCEC)	 Water Quality Regulations and Policy
Arkansas Department of Parks and Tourism	 Water Management
Arkansas Forestry Commission	 Water Quality Regulations and Policy
	 Source Water Protection
	 Water Conservation
Arkansas Game and Fish Commission (AGFC)	 Water Management
	 Water Conservation
Arkansas Geological Survey	 Water Information Management
Arkansas Multi-Agency Wetland Planning Team	 Water Quality Standards
Military Department Arkansas National Guard	 Water Management
Arkansas Oil and Gas Commission	 Source Water Protection
Arkansas Public Service Commission	Water Use
	 Water Management
Arkansas State Board of Health	 Water Quality Regulations and Policy
Arkansas State Plant Board	 Source Water Protection
	 Water Quality Monitoring
Arkansas Water Well Construction Commission	 Water Quality Protection/Policy Water
	Information Management
Arkansas Waterways Commission	 Water Development
U of A Cooperative Extension Service	 Water Information Management
U of A Water Resources Center	 Water Information Management
Arkansas-Oklahoma Arkansas River Compact Commission	 Water Management
Red River Compact Commission	 Water Management
Regional Planning and Economic Development Districts	 Water Management
	 Water Development
Regional Water Distribution Districts	 Water Management
Local Conservation Districts	 Source Water Protection
	 Water Conservation
Drainage, Improvement, Irrigation, and Levee Districts	 Water Management
	 Water Development
Nonprofit Organizations	Water Conservation
	 Source Water Protection
	 Water Policies

6 Framework for Water Management

To provide an answer to the question—"How much water do we currently use and how much will we need in the future?"—several major steps must be completed. This includes the quantification of current and future water demand, availability, and the gaps between them. The estimates of future water demands, availability, and gaps are intended for statewide and regional planning purposes, and are not intended to replace local water resource planning efforts.

It should be noted that while every effort was made to use the best available data for the supply and demand analyses in the AWP, the analyses are based on projections to the year 2050. Projections are inherently uncertain and as a result, the analyses results have a recognized level of uncertainty; however, they are considered adequate for statewide planning purposes.

6.1 Statewide Overview

The methods and data used to quantify current and future water demand and availability for the State are described below. This information is used to develop a complete statewide, county, and regional quantification of current and future water needs by source of supply (surface water and groundwater) and by various demand sectors.

6.1.1 Water Demand Forecasts for the AWP Update

Current and future water demands of each county are estimated by water using sectors. Data assembled to provide an estimate of base period use vary by sector and data availability but generally represent the period from 2008 to 2010. The future water use of each sector is determined by the growth of a "driver" (e.g., population, employment, etc.) that is appropriate for each sector and either available from an acceptable source or projected into the future in a manner acceptable to the Demand Technical Workgroup.

Municipal (Public-supply) and Domestic Self-supplied Water Use

Water use among publicly-supplied municipal (includes all publicly-supplied users) water users by county is projected into the future based upon the rate of growth of the county population. Base period water use for each county was obtained from either the Department of Health (DOH) Sanitary Survey or the Water Use Registration Program (ANRC Water Use Databases [WUDBS]) data. Where publicly-supplied municipal water withdrawals are identified for mining or industrial use, these water volumes are subtracted

Watershed - Photo courtesy of USDA-NRCS

from the volume of municipal water use and are accounted for in their respective sector demand estimates. The reported municipal water volume is divided by the reported population served to derive a gallon per capita per day (gpcd) rate of use for each municipality, which is then weighted by the respective population served to derive a county average gpcd. The weighted average per capita use for each county includes some imbedded commercial and industrial water use, as well as distribution system losses.

USGS 2010 data on the percent of population that is publicly-supplied and self-supplied for each county is used to disaggregate county population projections. USGS data is used to determine county self-supplied gpcd. Self-supplied water use is projected into the future based upon the rate of county population growth.

Arkansas River Barge – Photo courtesy of Arkansas Department of Parks and Tourism

Self-supplied Commercial Water Use

Water use among self-supplied commercial water users (i.e., campgrounds, resorts, stores) by county is projected into the future based upon the rate of growth of the county population. Base period water use for each county was obtained from either the WUDBS data or the DOH Sanitary Survey. The WUDBS average and DOH available data are summed to represent the base period self-supplied commercial water use for each county. Future self-supplied commercial water demands are calculated by applying the county population rate of growth to base year county commercial water demands.

Cassotot River-Photo courtesy of ANRC

Industrial Water Use

Water use among industrial water users by county is projected into the future based upon the rate of growth of the county employment. Base period water use for each county was obtained from the WUDBS data, which are averaged to provide an average base period water use for each county. Entities in the WUDBS determined to be industrial water users may be classified within the WUDBS as: (a) industrial users, (b) municipally-supplied withdrawals identified for industrial use, (c) noncommunity systems with corporate names, or (d) commercial self-supplied withdrawals determined to be industrial users (e.g., bottling company).

Future industrial water demands are calculated by applying the county employment rate of growth (rate of growth can be positive or negative) to base year county industrial water demands. The employment growth rates are derived from: (1) The Arkansas Department of Workforce Services projections of employment from 2008 to 2018 by Workforce Investment Area (WIA), and (2) Woods & Poole employment at the county level to the year 2040.

Self-supplied Mining Water Use

Water use among self-supplied mining water users by county is projected into the future based upon the rate of growth of the county mining employment. Base period water use for each county was obtained from the WUDBS data and averaged across years for each county. Future self-supplied mining water demands are calculated by applying the county mining employment (North American Industry Classification System 212) rate of growth to base year county mining water demands. The mining forecast includes one notable demand in Izard County. Izard County produces a unique sand type that is used in the fracking of mineral development wells. The employment data show employment growth through the planning horizon so mining water use grows at that rate of employment growth. It is not known if the demand for this sand type will mirror trends in Arkansas shale development or other national demand for this type of sand. If it is tied more closely to Arkansas shale development, then the rate of growth would be expected to trend more closely with the shale gas forecast, which projects full development by 2024 - 2025.

Pocahontas, Arkansas - Photo courtesy of ANRC

Self-supplied Shale Gas Water Use

Water use for self-supplied shale gas development and associated water use by county is projected into the future based upon assumptions developed in coordination with the Demand Technical Workgroup. The primary water dependent activity in shale gas development is the fracking process. Data from shale gas companies was provided to ANRC and used to develop a value for the amount of water used (4.73 mgd) to frack a well. This average water use

assumes that all water associated with a given well is used in the year that the well is drilled, and no refracking (returning to further develop the well) occurs after the initial year of development. The forecasted water demand does not include any estimate of reuse water recovered after fracking or "produced" water encountered the well drilling/development process.

Big Maumelle River – Photo courtesy of ANRC

It was estimated that a total of approximately 14,000 wells could be developed in the Fayetteville shale formation. This is about 10,000 more wells than are currently active. It is estimated that about 500 wells could be drilled per year over the next approximately 20 years. If there is a significant increase in natural gas prices, this estimate should be revised.

Geographic information system analysis of the Fayetteville shale formation was used to determine the approximate area of potential development per county for the nine counties that overlay the formation. A density of seven wells per square mile was used to determine a maximum potential number of wells per county. The assumed increase of 500 new wells per year is distributed proportionally among the nine counties based on 2012 existing distribution. The cumulative number of wells per county reaches the maximum potential number of wells for each county at about the year 2025. Thus it is assumed that the demand for water for shale gas development will end.

The source of self-supplied shale gas water is 100 percent from surface water. The water is assumed to remain deep within the shale formation. Some information suggests that a small to moderate percent (5 to 35 percent) of water used in the fracking process may be recoverable, depending upon the operating procedures and site-specific conditions. This excludes

any "produced" water that may have entered the well from penetrated aquifers.

The shale gas boom in Arkansas was not anticipated during the 1990 AWP. In light of this unforeseen increase demand for water, the planning team reviewed literature and mineral resource data for the State to identify possible unknown future emerging resource development that might significantly affect water use. Two potential resources were identified—Lignite and the Lower Smackover Brown Dense Formation (an unconventional oil reserve). In both cases information was not identified to provide an understanding of the feasibility, rate of possible development, and rate of water use. Information on these resources should be tracked over the coming years to determine more specific information on possible water use needs and development potential.

Self-supplied Thermoelectric Power Water Use

Water use among self-supplied thermoelectric power (power) water users by county is estimated for each major power generating facility in the State, and projected into the future based taking into consideration fuel type, prime mover, cooling method, and three scenarios of regional projections of future power generation. Plant specific withdrawal and consumption factors were developed using data from the WUDBS and input from thermoelectric energy producers in Arkansas. Base period water use for each generating unit of each facility was estimated with water withdrawal and water consumption factors developed with guidance from the Demand Technical Workgroup. These water use factors (in gallons per megawatt hour [MWh]) are multiplied by the annual power generation (in MWh) for each unit, and then converted to mgd. Thus, a withdrawal mgd and consumption mgd is estimated for each generating unit. Nearly all water use is from surface water sources and is almost all returned to surface water.

Future self-supplied thermoelectric power water demands are based upon Department of Energy, Energy Information Agency (EIA) projections of power generation by regional pool and fuel type. Power generating facilities in Arkansas are in one of two regional power pools. The rate of growth in power generation by fuel type by pool was assigned to the Arkansas facilities by fuel type and location. EIA projections of power generation from 2010 - 2035 were

extended to 2050 using the growth rate from 2034 - 2035 by power pool and fuel type. However, each facility has a maximum generating capacity, which was developed with guidance from the work group. If the assigned allocated power generation in a given future year exceeds the facility maximum capacity, then no additional power generation is assigned at that facility and the "overload" is reassigned to all other facilities of the same fuel type that are not at maximum capacity. The allocation of projected power generation by facility was then multiplied by the withdrawal and consumptive use requirements of each generating unit to derive the estimated future water demand by facility.

Crop Irrigation Water Use

Crop irrigation – *Photo* courtesy of USDSA-NCS

Water use for crop irrigation by county is estimated based upon number of acres irrigated by crop type and an application rate per acre by crop type. The base year number of irrigated acres is estimated to increase for most crops in most counties based upon historical trends up to a reasonable maximum level as determined by analysis

of available tillable acreage that is not currently under irrigation. The base period (2010) and historical (2000 - 2010) irrigated acreage and crop irrigation water application rates for each county were obtained from two sources. Irrigated acres in cotton, corn, and miscellaneous crops were obtained from the WUDBS. Irrigated acres in soybean and rice were obtained from the USDA - County Agricultural Production Survey (CAPS) data. A total of 37 counties were identified as having irrigated acres in the four primary crops (soybeans, rice, corn, and cotton), which comprise 98 percent of all crops grown in Arkansas. Other crops were also forecasted and include berries, unclassified cash grains, orchards, hay, milo, oats, pastures, peanuts, sorghum, tobacco, vegetables, and wheat. Calculations also included water used for crop reservoir and crop maintenance.

The water application rate was determined from the analysis of WUDBS crop irrigation records in which a single crop was irrigated from a single source of supply. Thus, application rates were determined by crop, month, and county. Irrigation volumes reported in November and December are outside the typical irrigation season and were assumed to be withdrawals associated with the waterfowl management water use. Note that the average application rate includes system losses and irrigation inefficiencies as the application rate is based upon water withdrawal data. The application rate by county, crop, and month is multiplied by the acres irrigated per county by crop to estimate the irrigation water demand by county, crop, and month for the 37 counties irrigating these primary crops.

The trends in historical irrigated acres by crop by county were used to determine the future irrigated acreage. Irrigated acres in soybeans, rice, cotton, corn, and "other" were summed for each county and year. For each county, the total tillable row crop acreage was deemed as the maximum number of irrigable acres within each county that were most likely to become irrigated during the forecast period. Twenty of the 37 counties that irrigate the primary crops are projected to reach the maximum irrigable acres before 2050.

Self-supplied Waterfowl Management Water Use

Water use for waterfowl management by county is estimated based upon number of acres flooded and an application rate per acre. WUDBS data for this sector includes self-supplied duck clubs, self-supplied commercial habitat maintenance (AGFC reports water use for maintaining reservoir levels and habitat maintenance), and a component of self-supplied crop irrigation from November to December. The base year volume of water is assumed constant into the future.

Livestock Water Use

Water use among agricultural livestock water users by county is projected into the future based on USDA National Agricultural Projections through 2022. Some specific exceptions to this methodology are made by animal type based on Demand Technical Workgroup suggestions.

Grazing land – Photo from USDSA-NCS

Baseline animal counts were obtained based on 2012 statewide USDA, National Agricultural Statistics Services (NASS) CAPS animal counts for dairy cows, beef cattle, and hogs and pigs. These statewide animal counts were disaggregated to the county level using the ratio of county to state animal count taken from 2007 USDA NASS Census of Agriculture (COA). Baseline animal counts at the county level for chickens, turkeys, sheep, goats, and horses were obtained from the 2007 COA.

Daily water use requirements by animal type were estimated using data from USGS and Arkansas Natural Resources Conservation Service. Daily water requirements for each livestock group include water used for drinking water, cooling, and sanitation and wastewater removal requirements. To determine base period water use, the baseline animal count by animal type by county is multiplied by the daily water requirement.

Future livestock animal counts are calculated based on USDA National Livestock Projections livestock growth projections for beef cattle and chickens and turkeys through 2022. Lack of data or specific input from the Demand Technical Workgroup regarding historical trends resulted in the baseline count of other animal types remaining constant throughout the forecast period.

The livestock water demand is assumed equally distributed across the county and distributed proportionally among planning regions in cases where counties cross regional planning boundaries.

Aquaculture Water Use

Water use among aquaculture water users by county is quantified by species type and number of acres used for fish cultivation, in combination with water application rates per species type. Overall, with the exception of catfish, aquaculture water demands did not show significant past trends and no major drivers for growth were identified. Consequently, for planning purposes demands are held constant for all species types over the forecast period. Base period water use for each county was estimated using (1) aquaculture acreage data from the WUDBS in combination with USDA NASS 2012 statewide information, and (2) water application rates by species from the Demand Technical Workgroup. The species application rate for each species is multiplied by the acres per species by county to derive the aquaculture water demand by county. All water for aquaculture purposes is obtained from groundwater to ensure conformance with regulation, and to control parasites and disease as surface water has the potential to introduce contaminants into the ponds.

Future aquaculture water demands are extremely vulnerable to environmental regulations, international markets, and other factors, such that the future of aquaculture in the State is uncertain. Future water demands for aquaculture are held constant at baseline period levels for planning purposes.

Summary of Statewide Water Demands

Water demands by sector are aggregated statewide and summarized in Figures 6-1 and 6-2 and Table 6-1.

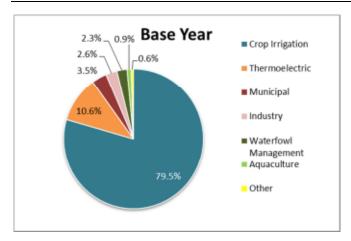


Figure 6-1. AWP Water Demand Forecast by Sector for the Base Year

Figure 6-2. AWP Water Demand Forecast by Sector for the Year 2050

Table 6-1. AWP Water Demand Forecast in AFY

Sector	Base Year	2015	2020	2025	2030	2035	2040	2045	2050
Crop Irrigation	9,876,000	10,263,000	10,650,000	10,893,000	11,136,000	11,180,000	11,224,000	11,236,000	11,247,000
Thermoelectric	1,319,000	1,410,000	1,428,000	1,486,000	1,498,000	1,508,000	1,511,000	1,515,000	1,518,000
Municipal	431,000	441,000	454,000	468,000	483,000	500,000	519,000	540,000	564,000
Industry	326,000	315,000	306,000	293,000	280,000	266,000	252,000	239,000	226,000
Duck Hunting	291,000	291,000	291,000	291,000	291,000	291,000	291,000	291,000	291,000
Aquaculture	116,000	116,000	116,000	116,000	116,000	116,000	116,000	116,000	116,000
Livestock	31,000	31,000	33,000	33,000	33,000	33,000	33,000	33,000	33,000
Self-supplied Domestic	15,000	15,000	15,000	15,000	15,000	15,000	15,000	16,000	16,000
Shale Gas	12,000	12,000	11,000	9,000	0	0	0	0	0
Mining	7,000	7,000	8,000	9,000	10,000	11,000	13,000	14,000	16,000
Self-supplied Commercial	7,000	7,000	7,000	7,000	8,000	8,000	8,000	8,000	9,000
TOTAL	12,426,000	12,903,000	13,313,000	13,616,000	13,866,000	13,924,000	13,979,000	14,003,000	14,033,000

6.1.2 Surface Water Availability

This section describes the process for estimating surface water availability for the planning horizon of 2050 and characterizes surface water quality for the State. Surface water calculations were completed for 9 major river basins and 32 smaller river basins within the larger basins.

Methodology and Approach

The amount of surface water available for use is quantified using the definition of "excess surface water" in ANRC Title 3, Rules for the Utilization of Surface Water. The process for calculating excess surface water is shown in Figure 6-3. The calculation of excess surface water has three parts: (1) the flow in the river basins, (2) the amount of water necessary to meet demands, and (3) computing 25 percent of the flow that is "excess" to the demands.

The first part, *flow in the river basins*, is average annual streamflow. Data from 51 gaging stations were used to determine annual average flow in the major basins and subbasins.

The second part of the excess water calculation, the amount of water necessary to meet demands, requires estimating the amount of water that is necessary to meet the needs of all water users on that river. The definition of "excess surface water" in ANRC Title 3 lists the demands that must be accounted for as:

- Existing uses
- Instream Flow Requirements
 - Fish and wildlife flows
 - Water quality
 - Aquifer recharge requirements
 - Navigation
- Future demands

Figure 6-3 illustrates how the amount of water to meet these demands is calculated. The "existing uses" are reflected in the amount of water measured at the gage, simply because if the water is being used, it is not in the river. The "instream requirements" are estimated using protocols described in the Water Availability Report (Appendix C). The "future demands" estimated using the demand forecast methods described briefly in Section 6.1.1 and in detail in the Water Demand Forecast Report (Appendix E).

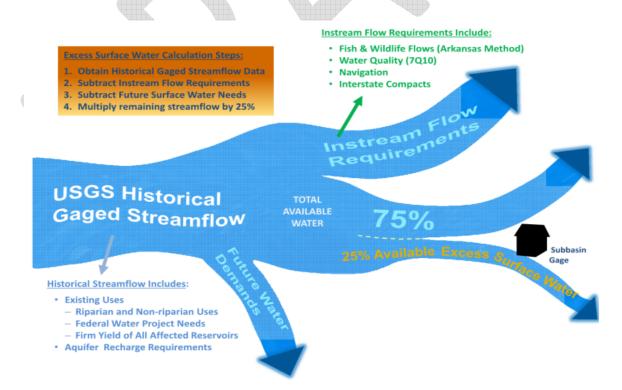


Figure 6-3. Excess Surface Water Calculation Steps

Of the "instream requirements" specified in the excess water definition, the amount of water for "fish and wildlife flows" is the most difficult to quantify. The 1990 AWP quantified fish and wildlife flows using the Arkansas Method, developed by the AGFC in 1987 (Filipek et al. 1987). The Arkansas Method specifies the proportion of the flow that must remain in the river during different seasons in order to maintain fish and wildlife.

The Arkansas Method was also used to estimate the water needed for fish and wildlife flows in the 2014 AWP. The ANRC recognizes that the understanding of healthy ecosystems has progressed significantly since 1990 and new science-based methods of determining fish and wildlife flows should be employed. A study to develop one or more science-based approaches and a process for approving the use of alternative approaches is a recommendation of the Excess Surface Water Issue in Section 3.3.

The third part of the excess water calculations, computing 25 percent of the flow that is "excess" to the demands, is a simple multiplication to calculate 25 percent of the remaining flow after the water to meet demands has been subtracted. The result is the "excess water" available for permitted nonriparian uses in that river basin.

Surface Water Quantities

The excess water available in the 32 river basins is shown in Table 6-2 and Figure 6-3 displays the average annual excess surface water for the major river basins. There is an abundance of excess water available in all of the river basins, as shown in Table 6-2 and Figure 6-3, but it is important to remember that this abundance is on an annual average basis. The demands on surface water vary seasonally and are usually the highest when stream flow is lowest. To understand the seasonal availability of surface water, monthly flow data were used to evaluate how much surface water is available at different times of the year.

Table 6-2. Calculated Excess Surface Water

Table 0-2. Calculated Excess Sulface	vater
	Excess Surface
Stream/Watershed	Water (AFY)
St. Francis River	670,000
L'Anguille River	90,800
White River	2,141,000
Upper White River	1,742,000
Cache River	161,000
Kings River	42,300
Black River	695,000
South Fork of Little Red River	37,000
Middle Fork of Little Red River	36,300
Devil's Fork of Little Red River	24,600
Arkansas River	3,310,000
Spavinaw Creek (and tribs)	21,200
Flint Creek	3,600
Illinois River	45,000
Baron Fork	6,300
Lee Creek	24,000
Poteau River	29,700
Poteau River Tributaries	15,700
Mulberry River	42,600
Big Piney Creek	3,700
Illinois Bayou	41,700
Point Remove Creek	41,900
Cadron Creek	47,700
Petit Jean River	81,800
Fourche La Fave River	66,000
Red River	1,140,000
Little River	379,000
Saline River	38,700
Kelly Bayou	4,700
Bodcau Creek	34,600
Bayou Dorcheat	42,600
Mountain Fork	30,500
Ouachita River	979,000
Upper Ouachita River	61,900
Saline River	272,000
Ouachita River Tributaries-East	2,900
Ouachita River Tributaries-West	46,200
Bayou Bartholomew	89,100
Bayou Bartholomew Tributaries	25,500
Boeuf River	42,300
Boeuf River Tributaries	9,500
Bayou Macon	27,100

³⁸ S. Filipek, W.E. Keith, and J. Giese, *The Status of the Instream Flow Issue in Arkansas*, 1987 PROCEEDINGS ARKANSAS ACADEMY OF SCIENCE, 1987, pp. 43-48

The monthly surface water analysis used both the statutory definition of excess surface water, i.e., 25 percent of the flow after demands are met, and the "total available" surface water, which is 100 percent of the flow after demands are met. All major river basins, with the exception of the Boeuf, have both total available surface water and excess surface water on a monthly basis. As is the case today, the projection for the Boeuf River Basin is that there will not be enough water to meet demands in the summer months (June, July, and August) in 2050.

Surface Water Quality

Water quality is characterized in terms of its suitability for the various uses. Nine of the water use sectors have requirements with regard to both the volume and quality of water needed, summarized in Table 6-3. Current surface water quality is evaluated using the State list of impaired waters that is prepared by the ADEQ in fulfillment of the requirements of Section 303(d) of the CWA. Changes in water quality since the 1990 AWP are identified through discussion of historical biennial water quality assessments

Water Use Sector	Surface Water Volume Needs	Surface Water Quality Considerations
Thermoelectric energy	Thermoelectric power generation facilities (e.g., gas and coal-fired power plants) require water for cooling.	Chemicals in water can affect cooling systems through corrosion, increased temperature, clogging, or encouraging growth of biologicals such as algae or zebra mussels that clog the system.
Navigation	In rivers where commercial goods are transported by barge, there is a minimum water depth that must be maintained for barges to be able to travel.	Sediment in rivers and streams can fill in navigation channels. The more sediment in a river, the quicker the navigation channel will fill, and the more frequently dredging will be required.
Industrial	Water is used in a variety of industrial processes, in mining and natural gas extraction, and for cooling at some industrial facilities.	Chemicals in water can affect industrial processes, machinery, and cooling systems.
Agricultural	Crops and livestock require adequate water to survive and thrive. In eastern Arkansas, many farmers flood their fields after crops are harvested in fall and winter to provide habitat for migrating ducks and other waterfowl.	High levels of some metals or chloride (salt) in water can harm crop plants. Chemicals and pathogens in water can cause illness in livestock and waterfowl. Chemicals and pathogens in water can also cause illness in aquaculture fish directly or indirectly by causing changes in water chemistry, such as pH or DO levels.
Drinking water	Adequate water for drinking is essential for human health.	Chemicals and pathogens in water can cause illness in humans. Nutrients in drinking water reservoirs can cause blooms of algae that lead to problems with water filtration, taste and odor, and toxins; and increase disinfection byproduct precursors.
Interstate water compacts	Arkansas is a member of two interstate compacts: Red River and Arkansas River. The compacts were negotiated to ensure equitable apportionment and development of the interstate waters. These compacts require that specific volumes be allowed to flow to each state.	Each state involved in the compact has the duty and responsibility to maintain water quality in rivers that cross state lines, in order to prevent adverse effects on downstream states. ¹
Fish and wildlife support	All wildlife requires water, and those creatures that live in water, such as fish and shellfish, require specific minimum water levels and flow rates to be healthy and successfully reproduce.	Pathogens, nutrients, and other chemicals in water can cause illness in aquatic organisms directly or indirectly by causing changes in water chemistry, such as pH or DO levels.
Recreation	There are minimum water depth requirements for use of recreational boats.	Pathogens and chemicals in water can make swimmers ill. At high enough levels, these same pathogens and chemicals may harm boaters and fishermen. Pollution in water and/or sediments can be transferred to fish in high enough levels that eating the fish is harmful to human health. In addition, water quality can affect the aesthetics of waterbodies and their desirability for recreation (e.g., brown water, presence of scum, or algae mats).
Minimum flows for water quality	In Arkansas, the minimum flow that must be maintained in state rivers and streams for dilution of wastewater discharges is usually the 7Q10 flow. The 7Q10 flow is determined for each stream based on historical flow records, and is the minimum 7-day average flow that occurs, on average, every 10 years.	Dischargers must consider flow and quality of receiving waters so that effluent concentrations do not contribute to exceedences of water quality standards.

http://www.oscn.net/applications/oscn/deliverdocument.asp?id=97778&hits=

conducted by ADEQ (as required by Section 305(b) of the CWA) and analysis of water quality data. In addition, long-term changes in water quality are assessed at sites where the data record spans at least 30 years. Although water quality assessments were submitted to EPA in 2010 and 2012, the 2008 assessment is the most recent State water quality assessment that has been approved by EPA, which oversees the assessment program. Therefore, the 2008 water quality assessment and list of impaired waterbodies are used to describe current surface water quality in the State.

A second source of information on water quality is the 2011 - 2016 NPS Pollution Management Plan. This plan is closely aligned with Arkansas's List of Impaired Waterbodies and the Water Quality and the 305(b) report. ANRC is responsible for the NPS Pollution Management Plan and ADEQ is responsible for developing water quality standards, monitoring water quality, and developing the biennial List of Impaired Waterbodies.

In 2008, almost 10,000 miles of streams and over 350,000 acres of lakes in the State were assessed for water quality by ADEQ. Fifty nine percent of the assessed stream miles and 64 percent of the assessed lake acreage were determined to be meeting numeric water quality criteria and supporting all of their designated uses. Table 6-4 below summarizes the impaired waters in Arkansas and their impaired uses. Note that in the 305(b) report and the 303(d) list, the agricultural water supply and industrial water supply

designated uses are combined, and support of these designated uses is not assessed separately.

6.1.3 Groundwater Availability

This section summarizes the process for estimating groundwater availability and characterizes groundwater quality for the State. Currently, about 71 percent of the water supply in the State is provided from groundwater sources.

Methodology and Approach

The amount of groundwater available for use is assessed using the latest version of the Mississippi Embayment Regional Aquifer Study (MERAS) model, a hydrologic model developed by the USGS. The MERAS model area is the aquifers of the Mississippi Embayment. The part of Arkansas that is in the MERAS model is shown on Figure 6-4. The MERAS model covers the eastern portion of the State, where the most significant groundwater development occurs. The MERAS model was used to assess the impact of meeting current and future demands with groundwater.

The MERAS model includes 10 primary hydrogeologic units, including the two aquifers – the Mississippi River Valley alluvial aquifer and the Sparta aquifer – that provide most of the groundwater in eastern Arkansas. The MERAS model was used as set up by the USGS, with the exception of updating groundwater demands and extending the model simulation period through 2050.

Table 6-4. Summary of 2008 Impaired Waters in Arkansas (ADEQ 2008)¹

Water Damand Sector Use	Impaired Stream Miles/% of	Impaired Lake Acres/%	
water Demand Sector Use	Total Assessed	of Total Assessed	
Recreation	363.3 / 3%	23,637 / 6%	
Fish and Wildlife	2,439.9 / 25%	11,248 / 3%	
Recreation	564.8 / 6%	0	
Recreation	7.0 / 0.007%	0	
Drinking Water	448.3 / 4%	97,105 / 27%	
Agriculture, Industrial	967.7 / 10%	0	
	4,086.5 / 41%	127,520 / 36%	
	9,849.7	357,896	
	Fish and Wildlife Recreation Recreation Drinking Water	Water Demand Sector Use Total Assessed Recreation 363.3 / 3% Fish and Wildlife 2,439.9 / 25% Recreation 564.8 / 6% Recreation 7.0 / 0.007% Drinking Water 448.3 / 4% Agriculture, Industrial 967.7 / 10% 4,086.5 / 41%	

¹ ADEQ, List of Impaired Waterbodies, 303(d) List (2008).

Fish consumption is not a designated use included in APEC Regulation No. 2, but waterbodies can be designated as impaired if sportfish in a waterbody are not safe for human consumption.

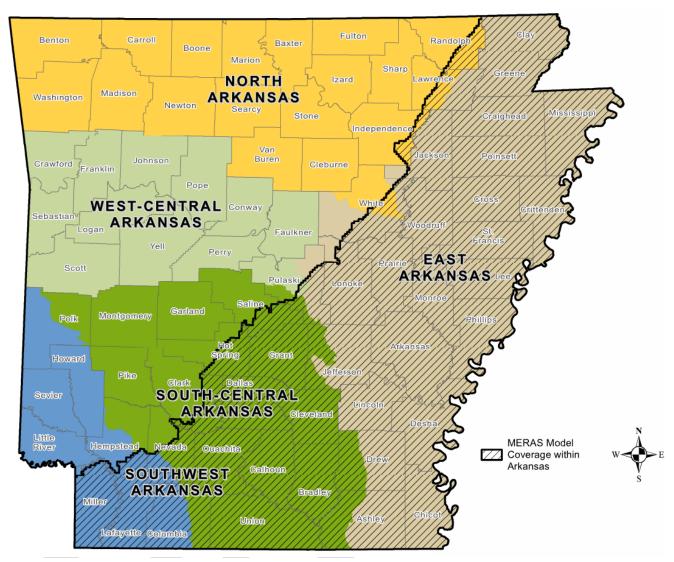


Figure 6-4. The MERAS Model Boundary with Respect to the Water Resource Planning Regions

In order to extend the MERAS model to the 2050 planning horizon, two types of model inputs had to be changed: the projected demands and the recharge estimates. The baseline (2010) demands are the same as the USGS estimates for current production that are included in the model. The 2050 demand projections for groundwater in the MERAS area aquifers were updated using the demands in the Water Demand Forecast Report (Appendix E). The recharge input to the model, which comes from projected streamflow, also had to be updated to the 2050 planning horizon. The recharge input values were based on datasets from the 2009 and 2011 versions of the model, which were projected to 2050 for the AWP Update.

The total groundwater demand across all aquifers ranges from 8.7 million AFY in 2010, increasing to 9.9 million AFY in 2050. Production from the Mississippi River Valley alluvial aquifer comprises 97.5 percent of the total pumping, with about 2 percent from the Sparta and the remaining 0.5 percent from the Wilcox aquifer.

The MERAS model was run using four scenarios to assess the availability of groundwater by aquifer and location. The four scenarios are combinations of two different climatic conditions (wet, dry) and two different pumping scenarios (sustainable, mining). The climatic conditions are based on combinations of historical periods that had drier and wetter conditions.

In the sustainable pumping scenario, the model shuts off pumping when the simulated water level reaches half of the original (pre-pumping) water level in the aquifer. In the mining scenario, the model allows pumping of water from the aquifer until the aquifer is dry. The results of modeling all four scenarios are presented in the AWP Water Availability Report (Appendix C), but only the results from the sustainable pumping under dry climate conditions scenario are described in this Executive Summary. The

groundwater availability predicted by modeling with this combination of climate and pumping represent prudent conditions for statewide planning purposes.

On a statewide basis, the projected 2050 groundwater demand is about 10 million AFY, but the available groundwater is 1.9 million AFY, leaving a water supply gap of 8.2 million AFY. Figure 6-5 displays the groundwater gap by major basin assuming sustainable pumping under dry climatic conditions.

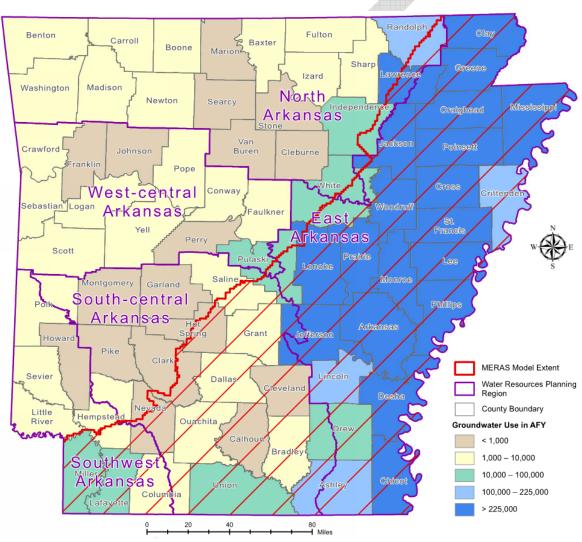


Figure 6-5. Groundwater Use in Arkansas

The modeling results show that current and projected demands for groundwater in the Mississippi Embayment in eastern Arkansas are not sustainable – the demand for water cannot be met by groundwater. This is the same result reported by the USGS in their modeling evaluations. Pumping at higher rates are possible for some time into the future by mining groundwater that is stored in pore space in the aquifer. However, once the water stored in the pore spaces of the aquifer is pumped out, it is not recharged fast enough to meet demands and significant damage to the aquifer could result. Even with this mining approach to groundwater development, production rates decline rapidly as pore space storage is depleted.

The sustainable pumping approach, where the groundwater levels are maintained at half of the predevelopment levels, will eventually reach a condition where pumping rates are about equal to the quantity of recharge entering the aquifers. Under the sustainable scenario for pumping levels, all of the demand for groundwater cannot be met and the areas of high agricultural use are the most impacted. Figure 6-6 displays the projected decline in water level between the base period and 2050 for the Mississippi River Valley alluvial aquifer with sustainable pumping. Even under sustainable pumping scenario, the predicted decline is up to 40 feet in Chicot County and Saint Francis County and up to 75 feet in Mississippi County.

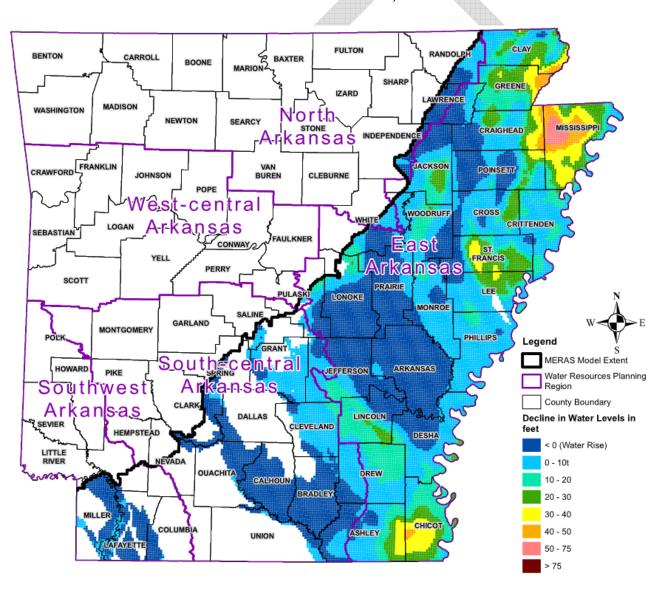


Figure 6-6. Decline in Water Levels between the Base Period and 2050 for the Alluvial Aquifer

These modeling results point out that groundwater demands cannot be met (i.e., there is a gap) and the water levels will continue to decline, even under sustainable pumping conditions. This conclusion serves to highlight the importance of replacing groundwater with surface water to meet demands. The Grand Prairie and Bayou Meto projects are important because they will convert about 15 percent of the East Arkansas WRPR irrigated acres from groundwater to surface water.

The model is a regional-scale model that is not capable of assessing small-scale conditions, but does provide a reasonable means to assess the availability of groundwater at the scale of this study.

The availability of groundwater outside the MERAS model area is based on a qualitative evaluation of water supply availability completed by the USGS and described in the "Aquifers of Arkansas: Protection, Management, and Hydrologic and Geochemical Characteristics of Arkansas's Groundwater Resources" (Kresse et al. in review) (Appendix D).³⁹

The Interior Highlands of Arkansas have less reported groundwater use than other areas of the State, reflecting a combination of effects - prevalent and increasing use of surface water, less intensive agricultural uses, lower population and industry densities, lesser potential yield of the resource, and lack of detailed reporting.

As such, the overall lower yields of aquifers of the Interior Highlands result in domestic supply as the dominant use, with minor industrial, small municipal, and commercial supply use. Where greater volumes are required for growth of population and industry, surface water is the greatest supplier of these water needs in the Interior Highlands.

Groundwater Quality

The information on groundwater quality comes entirely from the "Aquifers of Arkansas: Protection, Management, and Hydrologic and Geochemical Characteristics of Arkansas's Groundwater Resources" (Kresse et al. in review). 40 Groundwater quality

information was compiled from more than 500 historical and recent publications and from greater than 8,000 sites with groundwater quality data. The water quality data measurements were obtained from the USGS National Water Information System (NWIS) database and the ADEQ and entered into a spatial database to investigate distribution and trends in groundwater quality constituents for each of the aquifers. The water quality characteristics of 16 aquifers in Arkansas that currently serve or have served as important sources of water supply have been described.

The Mississippi River Valley alluvial aquifer is one of the most important aquifers in terms of total groundwater use in the State. Water quality generally is good throughout the extent of the aquifer; however, elevated iron concentrations in most areas preclude use of the aquifer for commercial, industrial, and municipal use without treatment. Elevated salinity additionally occurs in different areas of eastern Arkansas

The Sparta aquifer is the second most important aquifer in terms of volume of use in Arkansas. Groundwater from the Sparta aquifer generally is of very high quality; isolated areas contain slightly elevated chloride concentrations resulting from upwelling of high-salinity water from underlying formations.

Other aquifers of the Coastal Plain – including the Cane River, Carrizo, Wilcox, Nacatoch, Ozan, Tokio, and Trinity aquifers – generally are used as important local sources of domestic, industrial, and municipal supply. These aquifers all exhibit increasing salinity at various distances downdip from the outcrop areas that renders the groundwater unusable for most purposes. However, where there is a higher percentage of sand in the formations comprising these aquifers, for example, in the northeast part of the State, the aquifers are of high quality and result in greater use.

The Interior Highlands region of western Arkansas has less reported groundwater use than other areas of the State. Spatial trends in groundwater geochemistry in the Interior Highlands differ greatly from trends noted for aquifers of the Coastal Plain.

In the Ozark and Springfield Plateaus, the high degree of connectivity between the surface and groundwater

³⁹ T.M. Kresse, P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeirer, D.A. Westerman, and J.M. Blackstock, Aquifers of Arkansas: Protection, Management, and Hydrologic and Geochemical Characteristics of Arkansas's Groundwater Resources, U.S. GEOLOGICAL SURVEY (In Review, 2013).

– expressed in the occurrence of sinkholes, solution fractures, caves, losing streams, large springs, and other karst features – leads to nutrients, bacteria, and other surface-derived contaminants associated with agricultural activities posing the greatest threat to groundwater quality. A direct correlation was noted for increasing nitrate concentrations with increasing percentage of agricultural land use for the Springfield Plateau and Ozark aquifers.

6.1.4 Gap Analysis

This section describes the process for estimating the gaps between water availability and water demand and the infrastructure necessary to use the available water. Areas in the State with water supply gaps and an estimate of the magnitude of those gaps are identified. Infrastructure needs at the provider level are also described.

Methodology and Approach

To determine the water supply gaps, two types of water sources were analyzed throughout all the AWP technical studies – surface water and groundwater. Both of these sources were evaluated to determine where the most significant potential for supply limitations may exist in the future. The methodology for calculating excess surface water and total surface water available were described in Section 6.1.2.

Groundwater gaps were calculated as a function of modeled groundwater yields for areas within the MERAS model. Groundwater gaps for the State are based on projected changes in groundwater demands. In areas where a groundwater gap is projected, the gap analysis assumes the surface water could be used to fill the groundwater supply gap. A combined source gap occurs when there is insufficient excess surface water or total available surface water to fill the groundwater supply gap. Conversely, a combined source surplus occurs when more supplies are available than are required to meet all demand within a river basin. For all areas, even those where no combined source gap is projected, it is important to note that the appropriate infrastructure may not be in place to utilize all of the available supply.

The infrastructure gap was assessed based on surveying State, public water, and wastewater

providers within the State. The survey collected information on planning efforts, asset management and strategies, current and planned funding sources, and estimated costs to meet the identified needs. The infrastructure survey was sent to all 699 public, community providers in the ANRC database. Of the 699 surveys distributed, 261 providers responded to the survey, for an overall response rate of 38 percent, representing an estimated 67 percent of the population with supplied water and wastewater services. Response rates were representative across regions and providers of different sizes, ensuring that the survey data was representative of different provider circumstances and needs across the State. Overall, \$5.74 billion in infrastructure needs was identified through 2024 for all water providers. Similarly, wastewater providers are estimated to need \$3.76 billion in infrastructure improvements through 2023.

Results

The annual average 2050 groundwater gap across the State is estimated to be approximately 8.2 million AFY assuming sustainable groundwater pumping. On an annual average basis there is "excess surface water" and "total available surface water" in every major river basin; on a monthly basis the projected excess and total available surface water varies seasonally such that there is less available in the high demand months of June, July, and August.

At the major basin level, the results of the water supply gap analysis are summarized below and shown in Figure 6-7. All groundwater gaps are based on the assumption of sustainable pumping:

• Arkansas River—the Arkansas River Basin has a projected groundwater gap of over 750,000 AF in 2050; however, due to the substantial amount of excess surface water and total available water in the basin, there is a combined source surplus that ranges from 2,500,000 AF to 12,500,000 AF depending on the amount of surface water assumed available for development. An insignificant groundwater gap was identified for just the upper portion of the Arkansas River and a substantial combined source surplus was identified due to large amounts of available surface water supplies available in this upper portion.

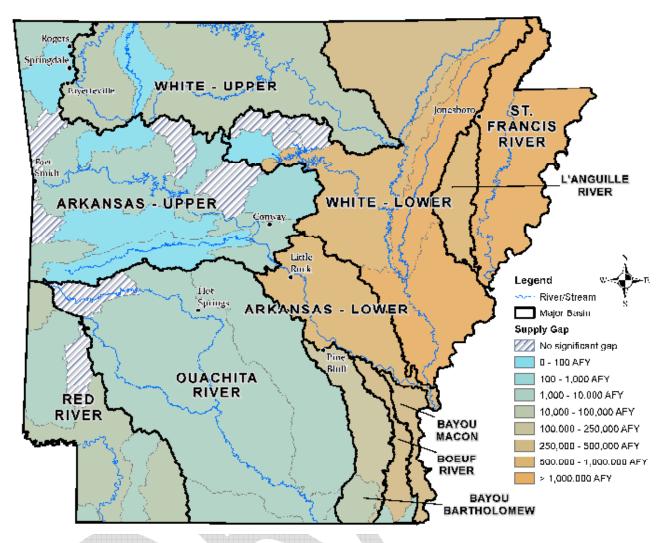


Figure 6-7. 2050 Groundwater Gap by Major Basin and Subbasin Assuming Sustainable Pumping Under Dry Climatic Conditions

- Bayou Bartholomew—the Bayou Bartholomew Basin's groundwater gap is estimated to be nearly 150,000 AF in 2050. This gap could be nearly filled with excess surface water leaving a combined source gap of 30,000 AF. If total available surface water is used, the combined source gap has potential to become a surplus greater than 300,000 AF.
- Bayou Macon—Bayou Macon's groundwater gap is projected to be 275,000 AF by 2050. The gap analysis determined that even under the assumption of developing total available surface water, a combined source gap of 170,000 AF remained in the basin.
- Boeuf River—the Boeuf River Basin is projected to have a groundwater gap greater than 300,000 AF. Similar to Bayou Macon, use of total available surface water would still leave a combined source gap of 110,000 AF. If only excess surface water were used, the combined source gap would be 280,000 AF.
- L'Anguille River—the L'Anguille River's groundwater gap is estimated to be over 900,000 AF in 2050. A large amount of groundwater demand in a relatively small basin results in a combined source gap ranging between 560,000 AF and 830,000 AF depending on the amount of surface water assumed available for development.

- Ouachita River—The Ouachita River Basin's groundwater gap was identified to be fairly insignificant. This fact, coupled with a large amount of available surface water, results in a combined source surplus ranging between 1,000,000 AF and 4,000,000 AF.
- Red River—The Red River's groundwater gap is projected to be just over 70,000 AF in 2050; however, ample surface water supplies exist and this gap can be fully eliminated. The combined source surplus assuming only excess surface water is available is greater than 1,000,000 AF.
- St. Francis River—The St. Francis River has the second largest groundwater gap, by basin, at an estimated 1,900,000 AF. Use of all available excess surface water would lessen this gap to 1,200,000 AF while use of total available water would create a surplus in the basin of nearly 800,000 AF.
- white River—the White River has a projected groundwater gap in excess of 3,750,000 AF. However; due to the large amount of surface water in this basin, the gap can be eliminated by developing all total available surface water leaving a surplus of over 4,750,000 AF. If only excess surface water is assumed available in the basin, a combined source surplus of greater than 1,600,000 AF is projected to exist. Assuming use of all total available surface water in the basin, this gap becomes a surplus on the order of 4,750,000 AF. Considering only the upper portion of the basin, the water supply gap is much less dire due to a low amount of groundwater demand and a large amount of available surface water.

6.2 Regional Water Resource Planning Areas

The water resource planning regions have been identified as a framework to quantify and compare available water supply with demands. Water demand, availability, quality, and gaps, are provided for each of the five water resource planning areas. The overall purpose of the water resource planning regions is to group areas of the state with shared resources and similar economic, social, and institutional characteristics in order to facilitate the water resource planning process and to devise basin- and resource-

focused planning needs, goals, and management practices/solutions to address local and regional needs.

6.2.1 East Arkansas WRPR

The East Arkansas WRPR encompasses approximately 15,900 square miles in eastern Arkansas. All or parts of 25 counties are included in this region. Major cities in the region include Jonesboro, Paragould, Pine Bluff, Forrest City, West Memphis, Blytheville, Stuttgart, and Helena. There are approximately 44,000 miles of rivers, streams, and ditches in the East Arkansas WRPR, approximately 680 miles of waterways used for commodity transport, and over 150,000 acres of impounded water (ASWCC 1981, Arkansas Waterways Commission 2013, USGS 2013a). 40, 41, 42 Groundwater in the East Arkansas WRPR represents one of the most valuable natural resources in the State. The primary water use of these aquifers is for agriculture, with crop irrigation accounting for 84 percent of water used in 2005 (USGS 2009). 43 There are eight recognized aquifers in the East Arkansas WRPR with crop agriculture as the largest industry. Tourism also contributes significantly to the regional economy. In addition to the agriculture economic sector, crop agriculture generates revenue in the manufacturing, real estate, wholesale trade, and transportation and warehousing economic sectors, and generates jobs in all of the economic sectors. Tourism generates revenue and jobs in many of the economic sectors including recreation, accommodation, and food services; retail trade; and real estate. Transport of commodities on the Arkansas and White Rivers in the East Arkansas WRPR is important to both the regional and the State economy.

 ⁴⁰ ASWCC, ARKANSAS STATE WATER PLAN, LAKES OF ARKANSAS, 142 (1981).
 ⁴¹ Arkansas Waterways Commission, 2011-2012 BIENNIAL REPORT, 6

^{(2013). 42} U.S. Geological Survey, COMPLETED NATIONAL HYDROGRAPHY DATASET

⁽NHD), SURFACE WATER, ftp://nhdftp.usgs.gov/DataSets/Staged/States/FileGDB/HighResolution/NHDH_AR_931v210.zip (last visited October 19, 2013).

⁴³ USGS (2009).

Surface Water Availability

The East Arkansas WRPR contains all or a portion of seven major basins. These basins have total excess surface water of over 6.3 million AFY and a total water availability of nearly 25.5 million AFY. **Table 6-5** presents these basins and identifies the portion of the basin that is within the East Arkansas WRPR. Because the total excess surface water numbers shown in Table 6-5 represents the entirety of all seven basins, this water may not be available for development strictly within the East Arkansas WRPR."

Groundwater Availability

The East Arkansas WRPR is projected to have groundwater availability in 2050 between approximately 1.8 million AFY **Table 6-6** summarizes the projected groundwater availability for the East Arkansas WRPR.

Water Quality

In the East Arkansas WRPR, water quality of 3,075 miles of streams and 15,578 acres of lakes were evaluated for the 2008 biennial assessment. Table 6-7 summarizes the extent of waterbodies in the East Arkansas WRPR that do not support designated uses and use sectors. The aquatic life designated use was not supported in the majority of impaired stream miles (81 percent) and all of the impaired lake acreage.

Groundwater quality in the East Arkansas WRPR is generally adequate for agricultural use; however, elevated iron concentrations in most areas preclude use of the groundwater for commercial, industrial, and municipal use without treatment. Elevated salinity additionally occurs in different areas of eastern Arkansas.

Table 6-7. Impaired Waters in the East Arkansas WRPR in 2008 (ADEQ 2008)

Designated Use Not Supported	Water Use Sector Impacted	Miles of Assessed Streams	Acres of Assessed Lakes
Aquatic life	Fish and wildlife	1,420.5	5,817
Fish consumption	Recreation	104.5	0
Primary contact recreation	Recreation	263.4	0
Secondary contact recreation	Recreation	7	0
Domestic water supply	Drinking water	65.4	0
Agricultural and industrial water supply	Agricultural and/or industrial	420.1	0
Total		1,758.6	5,817

Table 6-5. East Arkansas WRPR Summary of Surface Water Availability by Major Basin

Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ²	Excess Surface Water (AFY)	Total Available Surface Water (AFY)
Bayou Bartholomew	1,534	1,527	100%	114,517	458,068
Bayou Macon	570	570	100%	27,132	108,529
Boeuf River	773	773	100%	37,967	207,132
L'Anguille River	956	956	100%	90,803	363,214
Arkansas River – Lower ¹	2,533	1,995	79%	3,307,616	13,230,466
White River – Lower ¹	10,605	6,230	59%	2,131,256	8,525,023
St. Francis River	3,512	3,512	100%	670,461	2,681,844
TOTAL	20,483	15,562	_	6,379,753	25,574,275

¹ The Upper and Lower basins are hydrologically connected. Upper basin Excess Surface Water has been removed from Total values to avoid double counting.

Table 6-6. East Arkansas WRPR Groundwater Availability (AFY)

	•			
Pumping Level Limitation	Climate Assumption	Baseline	2020	2050
Minimum water elevation equal to half the aquifer thickness in the alluvial aquifer and the top of formation in the confined aquifers	Dry	3,538,946	2,413,647	1,809,405

² Instances where less than one percent of major basin was within a planning region were omitted from this table.

Projected Demand

Water demand in the East Arkansas WRPR is projected to increase over 13 percent from approximately 10 million AFY to just over 11.2 million AFY in 2050. In 2050, the East Arkansas WRPR is projected to represent 80 percent of the statewide water demand. The regional increase is related to anticipated development of irrigable acres. Other demand sectors are projected to remain relatively constant with little to no growth. Figure 6-8 and Table 6-8 show the projected water demand change over time for all demand sectors combined and also for noncrop irrigation demand sectors only.

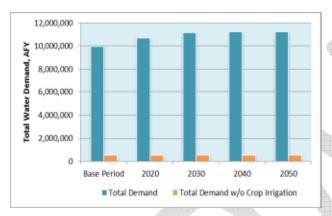


Figure 6-8. East Arkansas WRPR Water Demand by Region, including Thermoelectric Power Withdrawals

Supply and Infrastructure Gaps

A summary of the demand, supply availability, and the groundwater gaps for the East Arkansas WRPR are presented in Figure 6-9. Figure 6-9 highlights that while the groundwater gap is projected to be over 7 million AF in 2050, there is more than enough total available surface water from the rivers that flow through the East Arkansas WRPR to fill the gap. However, there is not enough excess surface water available.

As was noted in Sections 6.1.2 and 6.1.4, the Boeuf, Bayou Macon, and L'Anguille River do not have sufficient total available surface water to close the groundwater gaps within their basins. Table 6-9 shows the combined source gap assuming the respective surface water resources are fully developed. The combined source gap shown in Table 6-9 highlights that under dry climatic conditions and sustainably pumped groundwater that even if all available excess surface water were utilized, a total combined source gap of over 4.2 million AFY would exist for the Bayou Bartholomew, Bayou Macon, Boeuf River, L'Anguille River, St. Francis River, and Lower White River basins. If groundwater augmentation is not limited to excess surface water, but instead if all total available surface water is developed, the combined source gap in the Bayou Bartholomew, St. Francis River, and Lower White River basins is eliminated and the combined source gap associated with Bayou Macon, Boeuf River, and L'Anguille River is reduced to less than 850,000 AFY.

Surface water availability, represented as excess surface water and total available surface water, are based on summing the available surface water in major basins that intersect the East Arkansas WRPR. For this reason, the surface water availability quantity shown may not be fully developed within the East WRPR alone but instead shared amongst all the planning regions that intersect a particular basin.

The infrastructure gap in the East Arkansas WRPR was also assessed. A total of 203 water providers are located in the East Arkansas WRPR. The projected water infrastructure gap for the East Arkansas WRPR is estimated to be approximately \$1.58 billion, or approximately 27 percent of the identified total State infrastructure need. The East Arkansas WRPR had 69 surveys submitted, which represents 34 percent of water providers in the region.

Table 6-8. East Arkansas WRPR Water Demand by Region, including Thermoelectric Power Withdrawals (AFY)

With or Without Crop Irrigation?	Base Period	2020	2030	2040	2050
With Crop Irrigation	9,927,680	10,666,880	11,128,320	11,207,840	11,222,400
Without Crop Irrigation	535,360	537,360	530,880	528,640	527,520

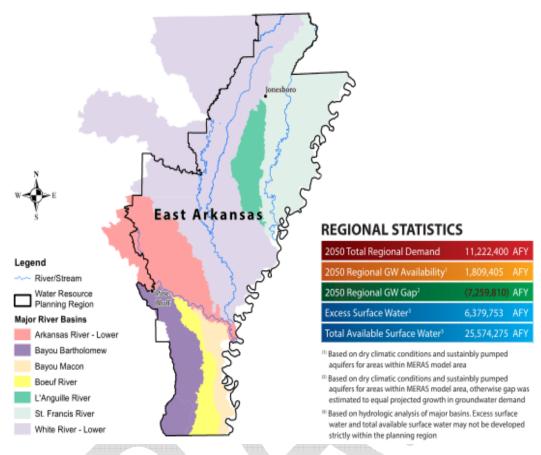


Figure 6-9. East Arkansas WRPR Regional Watershed Statistics

Table 6-9. East Arkansas WRPR Summary of 2050 Supply Gap by Major Basin Assuming Sustainable Pumping Under Dry Climatic Conditions

Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ²	Groundwater Supply Gap (AFY)	Groundwater Source Supply Gap w/Excess Surface Water (AFY)	Combined Source Supply Gap w/Total Available Surface Water (AFY)
Bayou Bartholomew	1,534	1,527	100%	144,619	$(30,102)^3$	313,449
Bayou Macon	570	570	100%	278,740	(251,608)	(170,211)
Boeuf River	773	773	100%	317,879	(279,912)	(110,748)
L'Anguille River	956	956	100%	926,719	(835,915)	(563,505)
Arkansas River – Lower ¹	2,533	1,995	79%	755,663	2,550,035	12,472,885
White River – Lower ¹	10,605	6,230	59%	3,730,143	(1,641,280)	4,752,487
St. Francis River	3,512	3,512	100%	1,897,110	(1,226,649)	784,733

The Upper and Lower basins are hydrologically connected. Upper basin Excess Surface Water has been removed from Total values to avoid double counting.

² Instances where less than one percent of major basin was within a planning region were omitted from this table.

Numbers in parentheses are negative numbers and they indicate the magnitude of the projected gap.

6.2.2 North Arkansas WRPR

The North Arkansas WRPR encompasses approximately 12,400 square miles in northern Arkansas. All or parts of 19 counties are located within this region. Major cities in the region include Bentonville, Rogers, Springdale, and Fayetteville. There are approximately 19,620 miles of rivers, streams, and ditches in the North Arkansas WRPR and 25,170 acres of impounded water (USGS 2009, ASWCC 1981). There are two primary aquifers that provide groundwater in the North Arkansas WRPR. The primary use of the Springfield Plateau aquifer is for domestic and livestock supply while the primary use of the Ozark aquifer is public water supply. The North Arkansas WRPR economy depends mostly on retail, manufacturing, and wholesale trade.

Surface Water Availability

The North Arkansas WRPR contains all or a portion of three major basins, the White River-Lower, the Arkansas River-Upper, and the Arkansas River-Lower. These basins have total excess surface water of 6.2 million AFY and a total water availability of nearly

25 million AFY. Table 6-10 presents these basins and identifies the portion of the basin that is within the North Arkansas WRPR. Because the total excess surface water numbers shown in Table 6-10 represent the entirety of all three basins, this water may not be available for development strictly within the North Arkansas WRPR."

Groundwater Availability

The North Arkansas WRPR is mostly outside the MERAS model area, but the eastern edge of the WRPR is within the model (Figure 6-4). The groundwater availability in the North Arkansas WRPR is the sum of MERAS model projected groundwater and available groundwater based on 2010 demands. The North Arkansas WRPR is projected to have groundwater availability in 2050 of approximately 78,000 AFY. Table 6-11 summarizes the projected groundwater availability for the North Arkansas WRPR.

Table 6-10. North Arkansas WRPR Summary of Surface Water Availability by Major Basin

Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ²	Excess Surface Water (AFY)	Total Available Surface Water (AFY)
White River – Lower ¹	10,605	4,316	41%	2,131,256	8,525,023
Arkansas River – Upper ¹	9,544	1,767	19%	3,256,854	13,027,414
White River – Upper ¹	6,525	6,493	100%	830,591	3,322,365
TOTAL	26,674	12,576	_	6,218,701	24,874,802

The Upper and Lower basins are hydrologically connected. Upper basin Excess Surface Water has been removed from Total values to avoid double counting.

Table 6-11. North Arkansas WRPR Groundwater Availability (AFY)

Pumping Level Limitation	Climate Assumption	Baseline	2020	2050
Minimum water elevation equal to half the aquifer thickness in the alluvial aquifer and the top of formation in the confined aquifers	Dry	179,536	79,068	78,782

⁴⁵ ASWCC, Arkansas State Water Plan, Lakes of Arkansas, 142 (1981).

² Instances where less than one percent of major basin was within a planning region were omitted from this table.

⁴⁴ U.S. Geological Survey, Completed National Hydrography Dataset (NHD), Surface Water,

ftp://nhdftp.usgs.gov/DataSets/Staged/States/FileGDB/HighResolution/NHDH_AR_931v210.zip (last visited October 19, 2013).

In 2008, 2,324 miles of streams and 129,691 acres of lakes were assessed for water quality by ADEQ in the North Arkansas WRPR. Table 6-12 summarizes the extent of waterbodies in the North AWRPR that do not support designated uses and may have resulting impacts on use sectors. Table A.1 in Appendix A summarizes the waterbodies in the North AWRPR that were assessed for the 2008 biennial assessment, those that were not attaining their designated uses, and the associated use sectors that were impacted. Approximately 69 percent of impaired stream miles and 98 percent of impaired lake acreage in this planning region do not support the aquatic life designated use (i.e., fish and wildlife water use sector).

Table 6-12. Impaired Waters in the North Arkansas WRPR in 2008 (ADEQ 2008)

Designated Use Not Supported	Water Use Sector Impacted	Miles of Assessed Streams	Acres of Assessed Lakes
Aquatic life	Fish and wildlife	561	2,031
Fish consumption	Recreation	2	50
Primary contact recreation	Recreation	195	0
Secondary contact recreation	Recreation	0	0
Domestic water supply	Drinking water	168	0
Agricultural and industrial water supply	Agricultural and/or industrial	196	0
Total impaired		816	2,081

Groundwater quality in the North Arkansas WRPR is generally of good quality. Because of the steep topography and poor soils in the Ozarks, agriculture in the form of cattle (beef and dairy), swine, and poultry operations accounts for the greatest land use activity in this region, and nutrients, bacteria, and pesticides from agricultural activities, home septic systems, and infiltration of urban runoff are the dominant threats to groundwater quality in the aquifer.

Projected Demand

Water demand in the North Arkansas WRPR is projected to increase from approximately 1 million AFY to just over 1.2 million AFY in 2050, an increase of over 18 percent. In 2050, the North WRPR is projected to contain 9 percent of the statewide water demand.

Figure 6-10 and Table 6-13 show the projected water demand change over time for all demand sectors combined and also for non-crop irrigation demand sectors only.

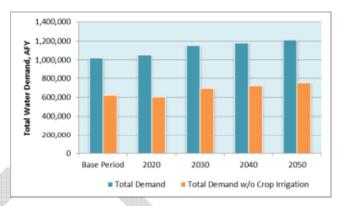


Figure 6-10. North Arkansas WRPR Water Demand by Region, including Thermoelectric Power Withdrawals

Supply and Infrastructure Gaps

A summary of the demand, supply availability, and the groundwater gap are presented in Figure 6-11. Figure 6-11 highlights that while the groundwater gap is projected to be just under 700,000 AF in 2050 there is more than enough excess surface water and total available surface water from the rivers that flow through the North Arkansas WRPR to fill the gap. Surface water availability, represented as excess surface water and total available surface water, are based on the summation availability in major basins that intersect the North Arkansas WRPR. For this reason, the surface water availability quantity shown may not be fully developed within the North Arkansas WRPR alone but instead shared amongst all the planning regions that intersect a particular basin.

Table 6-14 shows the combined source gap assuming the respective surface water resources are fully developed. The combined source gap shown in Table 6-14 highlights that if all excess surface water were used, a total combined source gap of over 1.6 million AFY would exist for the White River-Lower basin. If groundwater augmentation is not limited to excess surface water, but instead if all total available surface water is developed, the combined source gap is eliminated and instead a surplus would exist of more than 4.7 million AFY.

The infrastructure gap in the North Arkansas WRPR was also assessed. A total of 179 water providers are located in the North Arkansas WRPR. The projected water infrastructure gap for the North Arkansas WRPR is estimated to be approximately \$1.5 billion,

or approximately 25 percent of the identified total state infrastructure need. The North Arkansas WRPR had 71 surveys submitted which represents 40 percent of water providers in the region.

Table 6-13. North Arkansas WRPR Water Demand by Region, including Thermoelectric Power Withdrawals (AFY)

With or Without Crop Irrigation?	Base Period	2020	2030	2040	2050
With Crop Irrigation	1,022,560	1,052,800	1,151,360	1,180,480	1,212,960
Without Crop Irrigation	619,360	603,680	691,040	720,160	752,640

Table 6-14. North Arkansas WRPR Summary of 2050 Supply Gap by Major Basin Assuming Sustainable Pumping Under Dry Climatic Conditions

onder bry enmane conditions								
Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ²	Groundwater Source Supply Supply Gap (AFY) Groundwater Source Supply Gap w/Excess Surface Water (AFY)		Combined Source Supply Gap w/Total Available Surface Water (AFY)		
White River – Lower ¹	10,605	4,316	41%	3,730,143	(1,641,280)	4,752,487		
Arkansas River – Upper ¹	9,544	1,767	19%	1,918	3,254,935	13,025,496		
White River – Upper ¹	6,525	6,493	100%	42,393	788,198	3,279,972		

The Upper and Lower basins are hydrologically connected. Upper basin Excess Surface Water has been removed from Total values to avoid double counting.

Instances where less than one percent of major basin was within a planning region were omitted from this table.

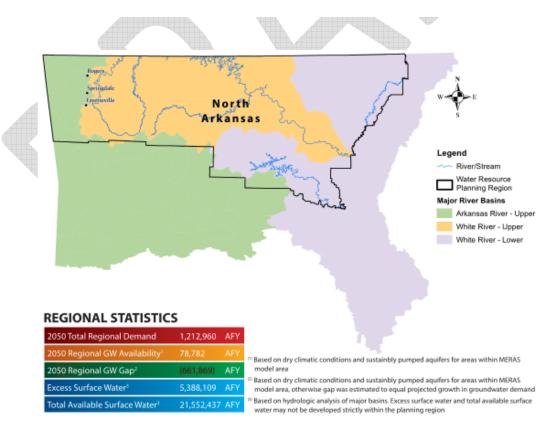


Figure 6-11. North Arkansas WRPR Regional Watershed Statistics

6.2.3 West-central Arkansas WRPR

The West-central Arkansas WRPR encompasses approximately 7,800 square miles in western Arkansas. Eleven counties and part of Pulaski County fall within this region. Major cities in the region include Fort Smith, Little Rock, North Little Rock, Conway, and Russellville. There are over 1,780 miles of streams in the West-central Arkansas WRPR (ADEQ 2009a).⁴⁶ The Arkansas River, which flows through this region, is one of the State's major rivers. The West-central Arkansas WRPR encompasses the Boston Mountains Plateau and a portion of the Arkansas River Valley in which there are no formally-recognized aquifers. The dominant use of groundwater is domestic supply, with minor industrial, small-municipal, and commercialsupply uses (Kresse, Hays and Merriman, et al. 2013). 47 This planning region has a diverse economic base, which includes industry, agriculture (livestock, poultry, eggs, and crops), tourism, and coal and gas extraction.

Surface Water Availability

The West-central Arkansas WRPR contains a portion of two major basins – the Arkansas River-Lower and the Arkansas River-Upper. These basins have total

excess surface water of 6.5 million AFY and a total water availability of over 26 million AFY. Table 6-15 presents these basins and identifies the portion of the basin that is within the West-central Arkansas WRPR. Because the total excess surface water numbers shown in Table 6-15 represent the entirety of both basins, this water may not be available for development strictly within the West-central Arkansas WRPR.

Groundwater Availability

The West-central Arkansas WRPR is mostly outside the MERAS model area, but a small portion of Pulaski County is within the model (Figure 6-4). The groundwater availability in the West-central Arkansas WRPR is the sum of MERAS model projected groundwater and available groundwater based on 2010 demands. The West-central Arkansas WRPR is projected to have groundwater availability in 2050 of approximately 10,000 AFY. Table 6-16 summarizes the projected groundwater availability for the West-central Arkansas WRPR.

Table 6-15. West-central Arkansas WRPR Summary of Surface Water Availability by Major Basin

Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ²	Excess Surface Water (AFY)	Total Available Surface Water (AFY)
Arkansas River – Lower ¹	2,533	149	6%	3,307,616	13,230,466
Arkansas River – Upper ¹	9,544	7,652	80%	3,256,854	13,027,414
TOTAL	12,076	7,801	_	6,564,470	26,257,880

The Upper and Lower basins are hydrologically connected. Upper basin Excess Surface Water has been removed from Total values to avoid double counting.

Table 6-16. West-central Arkansas WRPR Groundwater Availability (AFY)

Pumping Level Limitation	Climate Assumption	Baseline	2020	2050
Minimum water elevation equal to half the aquifer thickness in				
the alluvial aquifer and the top of formation in the confined	Dry	7,443	7,600	9,900
aquifers				

⁴⁶ Arkansas Department of Environmental Quality, _____(2009a).

⁴⁷ T.M. Kresse, P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeirer, D.A. Westerman, and J.M. Blackstock, Aquifers of Arkansas: Protection, Management, and Hydrologic and Geochemical Characteristics of Arkansas' Groundwater Resources, U.S. GEOLOGICAL SURVEY (In Review, 2013).

Instances where less than one percent of major basin was within a planning region were omitted from this table.

In the West-central Arkansas WRPR, ADEQ assessed water quality in 1,379 miles of streams and 76,237 acres of lakes for the 2008 305(b) report. Table 6-17 summarizes the extent of waterbodies in the West-central Arkansas WRPR that do not support designated uses and use sectors. The greatest proportion of impaired stream miles in this region (82 percent) do not support the aquatic life designated use. Fairly equal proportions of the impaired lake acreage in this region do not support the aquatic life, fish consumption, and domestic water supply designated uses.

Table 6-17. Impaired Waters in the West-central Arkansas WRPR in 2008 (ADEQ 2008)

7 ti italious 11 ti it iii i	-000 (, 12 - 0.	-000,		
Declarated the Net	Water Use	Miles of	Acres of	
Designated Use Not	Sector	Assessed	Assessed	
Supported	Impacted	Streams	Lakes	
Aquatic life	Fish and wildlife	296.5	2,900	
Fish consumption	Recreation	8.7	3,946	
Primary contact	Desusation	60.2	0	
recreation	Recreation	68.2	0	
Secondary contact	Recreation	0	0	
recreation	Recreation	U	0	
Domestic water	Drinking	39.4	2.675	
supply	water	39.4	2,675	
Agricultural and	Agricultural			
industrial water	and/or	28.4	0	
supply	industrial			
Total impaired		362.1	9,521	
	Non-	VIII (100) (100		

Groundwater derived from alluvial deposits of the Arkansas River is one of the most important sources of water in the Arkansas Valley section of the Ouachita Province and provides a valuable source of irrigation and municipal water supply. Groundwater in the Arkansas River Valley alluvial aquifer is of overall good water quality, with the exception of elevated iron concentrations, which often requires treatment for use as a municipal supply system. Chloride concentrations can be slightly elevated; however, only 4 of 661 samples with chloride analyses exceeded the federal secondary drinking water regulation of 250 mg/L.

Projected Demand

Water demand in the West-central Arkansas WRPR is projected to increase from approximately 1 million AFY to just over 1.1 million AFY in 2050, an increase of over 10 percent. In 2050, the West-central Arkansas

WRPR is projected to contain 8 percent of the statewide water demand. Figure 6-12 and Table 6-18 show the projected water demand change over time for all demand sectors combined and also for noncrop irrigation demand sectors only.

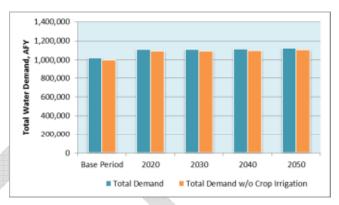


Figure 6-12. West-central Arkansas WRPR Water Demand by Region, including Thermoelectric Power Withdrawals

Supply and Infrastructure Gaps

A summary of demand, supply availability, and the groundwater gap are presented in Figure 6-13. Figure 6-13 highlights that while the groundwater gap is projected to be just over 55,000 AF in 2050, there is more than enough excess surface water and total available surface water from the rivers that flow through the West-central Arkansas WRPR to fill the gap. Surface water availability, represented as excess surface water and total available surface water, are based on the summation availability in major basins that intersect the West-central Arkansas WRPR. For this reason, the surface water availability quantity shown may not be fully developed within the Westcentral Arkansas WRPR alone but instead shared amongst all the planning regions that intersect a particular basin. Table 6-19 shows the combined source gap assuming the respective surface water resources are fully developed. The combined source gap shown in Table 6-19 highlights that under dry climatic conditions and sustainably pumped groundwater that if all available excess surface water were utilized, a total combined source surplus of over 5.8 million AFY would exist for the Arkansas River-Lower and Arkansas River-Upper basins. If groundwater augmentation is not limited to excess surface water, but instead if all total available surface water is developed, the combined source surplus would increase to more than 25 million AFY.

The infrastructure gap in the West-central Arkansas WRPR was also assessed. A total of 109 water providers are located in the West-central Arkansas. The projected water infrastructure gap for the West-central Arkansas WRPR is estimated to be

approximately \$1.2 billion, or approximately 21 percent of the identified total State infrastructure need. The West-central Arkansas WRPR had 42 surveys submitted, which represents 39 percent of water providers in the region.

Table 6-18. West-central Arkansas WRPR Water Demand by Region, including Thermoelectric Power Withdrawals (AFY)

With or Without Crop Irrigation?	Base Period	2020	2030	2040	2050
With Crop Irrigation	1,019,200	1,108,800	1,109,920	1,115,520	1,123,360
Without Crop Irrigation	999,040	1,090,880	1,092,000	1,097,600	1,105,400

Table 6-19. West-central Arkansas WRPR Summary of 2050 Supply Gap by Major Basin Assuming Sustainable Pumping Under Dry Climatic Conditions

Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ²	Groundwater Supply Gap (AFY)	Source Supply Gap w/Excess	Combined Source Supply Gap w/Total Available Surface Water (AFY)
White River – Lower ¹	2,533	149	6%	755,663	2,550,035	12,472,885
Arkansas River – Upper ¹	9,544	7,652	80%	1,918	3,254,935	13,025,496

¹ The Upper and Lower basins are hydrologically connected. Upper basin Excess Surface Water has been removed from Total values to avoid double counting.

² Instances where less than one percent of major basin was within a planning region were omitted from this table.

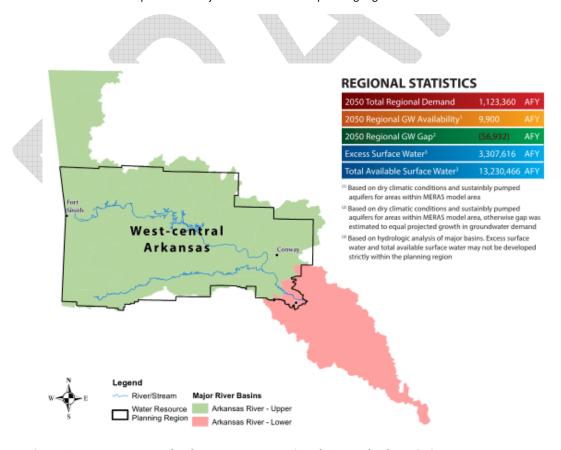


Figure 6-13. West-central Arkansas WRPR Regional Watershed Statistics

6.2.4 South-central Arkansas WRPR

The South-central Arkansas WRPR encompasses approximately 12,000 square miles in south central Arkansas. All or parts of 21 counties are included in this region. Major cities in the region include Benton, Hot Springs, Malvern, Arkadelphia, Camden, and El Dorado. There are approximately 9,710 miles of rivers and streams in the South-central Arkansas WRPR and 38,010 acres of impounded water (ASWCC 1981; USGS 2009). 48, 49 The major river in the region is the Ouachita River. The largest impoundments in this region are Lake Ouachita, Lake Hamilton, and Lake Catherine. The South-central Arkansas WRPR is located primarily in the West Gulf Coastal Plain, where the largest and most productive of the State's major aquifers are located. Of the many aquifers located in this region, the Sparta aquifer is the most important, yielding 82 percent of the groundwater used in this section of the WRPR in 2010. The primary water use of these aquifers is for domestic, industrial, and public water supply. Timber, tourism, agriculture, and resource extraction are important economic drivers in the South-central Arkansas WRPR (Association of Arkansas Counties 2013). Transportation of goods on the Ouachita River downstream of Camden also contributes to the regional economy.

Surface Water Availability

The South-central Arkansas WRPR contains a portion of two major basins – the Arkansas River-Lower and the Ouachita River. These basins have total excess surface water of 4.3 million AFY and a total water availability of over 17.3 million AFY. Table 6-20 presents these basins and identifies the portion of the basin that is within the South-central Arkansas WRPR. Because the total excess surface water numbers shown in Table 6-20 represent the entirety of both basins, this water may not be available for development strictly within the South-central Arkansas WRPR.

Groundwater Availability

A little more than one-half of the South-central Arkansas WRPR is within the MERAS model area (Figure 6-4). The groundwater availability in the South-central Arkansas WRPR is the sum of MERAS model projected groundwater and available groundwater based on 2010 demands. The South-central Arkansas WRPR is projected to have groundwater availability in 2050 of approximately 38,500 AFY. Table 6-21 summarizes the projected groundwater availability for the South-central Arkansas WRPR.

Table 6-20. South-Central Arkansas WRPR Summary of Surface Water Availability by Major Basin

Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ²	Excess Surface Water (AFY)	Total Available Surface Water (AFY)
Arkansas River – Lower ¹	2,553	389	15%	3,307,616	13,230,466
Ouchita River	11,559	11,309	98%	1,026,619	4,106,478
TOTAL	14,092	11,697	_	4,334,236	17,336,943

The Upper and Lower basins are hydrologically connected. Upper basin Excess Surface Water has been removed from Total values to avoid double counting.

Table 6-21. South-Central Arkansas WRPR Groundwater Availability (AFY)

Pumping Level Limitation	Climate Assumption	Baseline	2020	2050
Minimum water elevation equal to half the aquifer thickness in the	Dry	31.709	33.740	38.560
alluvial aquifer and the top of formation in the confined aquifers	ыу	31,709	33,740	36,300

⁴⁸ Arkansas Soil and Water Conservation Commission, Arkansas State Water Plan, Lakes of Arkansas, 142 (1981).

⁵⁰ Association of Arkansas Counties, http://www.arcounties.org/ (Retrieved October 16, 2013).

² Instances where less than one percent of major basin was within a planning region were omitted from this table.

⁴⁹ U.S. Geological Survey, Completed National Hydrography Dataset (NHD), Surface Water,

ftp://nhdftp.usgs.gov/DataSets/Staged/States/FileGDB/HighResolution/N HDH AR 931v210.zip (last visited October 19, 2013).

ADEQ assessed the water quality of 1,820 miles of streams and 90,071 acres of lakes in the South-central Arkansas WRPR for the 2008 biennial assessment. Table 6-22 summarizes the extent of waterbodies in the South-central Arkansas WRPR that do not support designated uses and use sectors. In this region, aquatic life is the designated use not supported in 84 percent of the impaired stream miles. The domestic water supply designated use is not supported in 90 percent of the impaired lake acreage in the planning region.

Table 6-22. Impaired Waters in the South-central Arkansas WRPR in 2008 (ADEQ 2008)

		/		
	Water Use	Miles of	Acres of	
Designated Use Not	Sector	Assessed	Assessed	
Supported	Impacted	Streams	Lakes	
Aquatic life	Fish and wildlife	652.8	300	
Fish consumption	Recreation	209.1	3,946	
Primary contact	D	22.0		
recreation	Recreation	22.0	0	
Secondary contact	Daguartian	^		
recreation	Recreation	0	0	
Domestic water	Drinking	102.0	F2 200	
supply	water	193.0	53,300	
Agricultural and	Agricultural			
industrial water	and/or	225.9	0	
supply	industrial		A.	
Total impaired		775.1	59,081	
	Violent control control	100	of the property of the propert	

Groundwater in the South-central Arkansas WRPR comes from the Ouachita Mountains aquifer in the northern part of the WRPR and from the Sparta aquifer in the southern part of the WRPR. The Ouachita Mountains aquifer is a shallow saturated section in the thick sequence of Paleozoic rock formations in the Ouachita Mountains. It serves as an important source of groundwater supply for domestic users, in addition to a limited number of small commercial- and community-supply systems. The Ouachita Mountains aquifer extends north to the Arkansas River, west to the State line, and south and east to the boundary with the Coastal Plain Province.

Groundwater quality in the Ouachita Mountains aquifer is good with respect to federal primary drinking water standards. Problems in regard to taste, staining, and other aesthetic properties are related to elevated levels of iron, which is a common complaint among domestic users.

The quality of groundwater from the Sparta aquifer throughout the State is very good; however, the Southcentral Arkansas WRPR is located in the outcrop area of the Sparta aquifer and there is elevated iron and nitrate groundwater concentrations in that area. Areas of high salinity are noted in isolated areas of the Sparta aquifer, predominantly as a result of inferred upwelling from high-salinity groundwater in underlying formations.

Projected Demand

Water demand in the South-central Arkansas WRPR is projected to increase from approximately 240,000 AFY to just over 260,000 AFY in 2050, an increase of over 10 percent. In 2050, the South-central Arkansas WRPR is projected to contain 2 percent of the statewide water demand. Figure 6-14 and Table 6-23 show the projected water demand change over time for all demand sectors combined and also for noncrop irrigation demand sectors only.

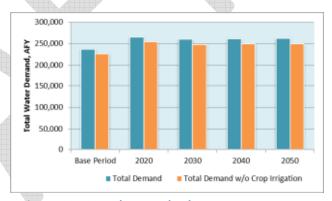


Figure 6-14. South-central Arkansas WRPR Water Demand by Region, including Thermoelectric Power Withdrawals

Supply and Infrastructure Gaps

A summary of the demand, supply availability, and the groundwater gap are presented in Figure 6-15. Figure 6-15 highlights that while the groundwater gap is projected to be just over 130,000 AF in 2050, there is more than enough excess surface water and total available surface water from the rivers that flow through the Southcentral Arkansas WRPR to fill the gap. Surface water availability, represented as excess surface water and total available surface water, are based on the summation availability in major basins that intersect the Southcentral Arkansas WRPR. For this reason, the surface water availability quantity shown may not be fully developed within the South-central Arkansas WRPR

alone but instead shared amongst all the planning regions that intersect a particular basin.

Table 6-24 shows the combined source gap assuming the respective surface water resources are fully developed. The combined source gap shown in Table 6-24 highlights that under dry climatic conditions and sustainably pumped groundwater that if all available excess surface water were utilized, a total combined source surplus of over 3.5 million AFY would exist for the Arkansas River-Lower and Ouachita basins. If groundwater augmentation is not limited to excess surface water, but instead if all total available surface

water is developed, the combined source surplus would increase to more than 16 million AFY.

The infrastructure gap in the South-central Arkansas WRPR was also assessed. A total of 142 water providers are located in the South-central Arkansas WRPR. The projected water infrastructure gap for the South-Central WRPR is estimated to be approximately \$1.1 billion, or approximately 19 percent of the identified total State infrastructure need. The South-Central WRPR had 52 surveys submitted, which represents 37 percent of water providers in the region.

Table 6-23. South-central Arkansas WRPR Water Demand by Region, including Thermoelectric Power Withdrawals (AFY)

With or Without Crop Irrigation?	Base Period	2020	2030	2040	2050
With Crop Irrigation	237,440	265.440	259,840	260,960	262,080
Without Crop Irrigation	226,240	254,240	247,520	249,760	249,760

Table 6-24. South-central Arkansas WRPR Summary of 2050 Supply Gap by Major Basin Assuming Sustainable Pumping Under Dry Climatic Conditions

Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ²	Groundwater Supply Gap (AFY)	Source Supply Gap w/Excess	Combined Source Supply Gap w/Total Available Surface Water (AFY)
Arkansas River – Lower ¹	2,533	389	15%	755,663	2,550,035	12,472,885
Ouachita River	11,559	11,309	98%	15,923	1,010,696	4,090,555

The Upper and Lower basins are hydrologically connected. Upper basin Excess Surface Water has been removed from Total values to avoid double counting.

² Instances where less than one percent of major basin was within a planning region were omitted from this table.

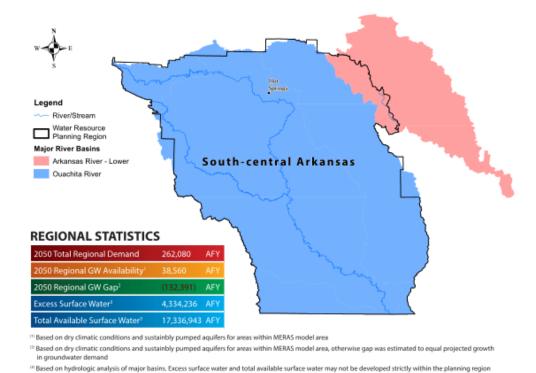


Figure 6-15. South-central Arkansas WRPR Regional Watershed Statistics

6.2.5 Southwest Arkansas WRPR

The Southwest Arkansas WRPR encompasses approximately 4,500 square miles in southwest Arkansas. All or parts of nine counties fall within the region. Major cities in the WRPR include Texarkana, Magnolia, Hope, Ashdown, and DeQueen. There are approximately 3,200 miles of rivers and streams in the Southwest WRPR, and over 85,000 acres of impounded water. Major rivers in the region include Red River, Little River, Cossatot River, Saline River, Bodcau Creek, Sulphur River, and Bayou Dorcheat. The largest impoundment in the region is Millwood Lake. There are 11 recognized aquifers in the Southwest WRPR where some of these aquifers are designated as regional aquifers and encompass parts of several states, whereas a few of these aquifers are considered minor and are only important as local sources of water. The water withdrawn from these aquifers are used primarily for domestic, industrial, irrigation, and public-water supply use. Agriculture, timber, and tourism are important economic drivers in the Southwest WRPR (Association of Arkansas Counties 2013).

Surface Water Availability

The Southwest Arkansas WRPR contains a portion of two major basins, the Arkansas River-Lower and the Ouachita River. These basins have total excess surface water of 4.3 million AFY and a total water availability of over 17.3 million AFY. Table 6-25 presents these basins and identifies the portion of the basin that is within the Southwest Arkansas WRPR. Because the total excess surface water numbers shown in Table 6-25 represent the entirety of both basins, this water may not be available for development strictly within the Southwest Arkansas WRPR.

Groundwater Availability

A little less than one-half of the Southwest Arkansas WRPR is within the MERAS model area (Figure 6-4). The groundwater availability in the Southwest Arkansas WRPR is the sum of MERAS model projected groundwater and available groundwater based on 2010 demands. The Southwest Arkansas WRPR is projected to have groundwater availability in 2050 of approximately 3,600 AFY. Table 6-26 summarizes the projected groundwater availability for the Southwest Arkansas WRPR.

Table 6-25. Southwest Arkansas WRPR Summary of Surface Water Availability by Major Basin

Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ¹	Excess Surface Water (AFY)	Total Available Surface Water (AFY)
Red River	4,440	4,439	100%	1,221,666	4,886,664

¹ Instances where less than one percent of major basin was within a planning region were omitted from this table.

Table 6-26. Southwest Arkansas WRPR Groundwater Availability (AFY)

Pumping Level Limitation	Climate Assumption	Baseline	2020	2050
Minimum water elevation equal to half the aquifer thickness in the alluvial	Dry	4,210	2,637	3,642

In the Southwest Arkansas WRPR, approximately 962 miles of streams and 44,020 acres of lakes were assessed for water quality by ADEQ in 2008. Table 6-27 summarizes the extent of waterbodies in the Southwest Arkansas WRPR that do not support designated uses and use sectors. Notably, 51.5 percent of these streams failed to support agriculture and industrial water supply uses, whereas 41 percent failed to support aquatic life uses. Ninety-three percent of the impaired lake acreage in this region does not support the domestic water supply designated use.

Table 6-27. Impaired Waters in the Southwest Arkansas WRPR in 2008 (ADEQ 2008)

Designated Use Not Supported	Water Use Sector Impacted	Miles of Assessed Streams	Acres of Assessed Lakes
Aquatic life	Fish and wildlife	191.8	0
Fish consumption	Recreation	32.0	3,150
Primary contact recreation	Recreation	36.4	0
Secondary contact recreation	Recreation	0	0
Domestic water supply	Drinking water	28.7	41,130
Agricultural and industrial water supply	Agricultural and/or industrial	241.1	0
Total impaired		465.9	43,130

Groundwater quality in the Southwest Arkansas WRPR is very similar to the South-central Arkansas WRPR water quality. Groundwater quality in the Ouachita Mountains aquifer is good with respect to federal primary drinking water standards. Problems in regard to taste, staining, and other aesthetic properties are related to elevated levels of iron, which is a common complaint among domestic users.

The quality of groundwater from the Sparta aquifer throughout the State is very good; however the Southwest Arkansas WRPR is located in the outcrop area of the Sparta aquifer and there is elevated iron and nitrate groundwater concentrations in that area Areas of high salinity are noted in isolated areas of the Sparta aquifer, predominantly as a result of inferred upwelling from high-salinity groundwater in underlying formations.

Projected Demand

Water demand in the Southwest Arkansas WRPR is projected to decrease from approximately 225,000 AFY to just over 217,000 AFY in 2050, a decrease of 3 percent. In 2050, the Southwest Arkansas WRPR is projected to contain 2 percent of the statewide water demand. Figure 6-16 and Table 6-28 show the projected water demand change over time for all demand sectors combined and also for noncrop irrigation demand sectors only.

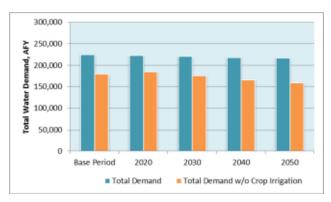


Figure 6-16. Southwest Arkansas WRPR Water
Demand by Region, including Thermoelectric Power
Withdrawals

Supply and Infrastructure Gaps

A summary of demand, supply availability, and the groundwater gap are presented in Figure 6-17. Figure 6-17 highlights that while the groundwater gap is projected to be just over 70,000 AF in 2050 there is more than enough excess surface water and total available surface water from the rivers that flow through the Southwest WRPR to fill the gap. Unlike other planning regions whose major basins intersect other planning regions on a moderate to significant level, the Southwest Arkansas WRPR is largely coincident with the Red River major basin. As a result

the surface water availability shown in Figure 6-19 is, more or less, solely within the Southwest Arkansas WRPR (not considering the potential for transbasin diversions to other planning regions). Table 6-29 shows the combined source gap assuming the respective surface water resources are fully developed. The combined source gap shown in Table 6-29 highlights that under dry climatic conditions and sustainably pumped groundwater, that if all available excess surface water were utilized, a total combined source surplus of over 1.1 million AFY would exist for the Red River Basin. If groundwater augmentation is not limited to excess surface water, but instead if all total available surface water is developed, the combined source surplus would increase to more than 4.8 million AFY.

The infrastructure gap in the Southwest Arkansas WRPR was also assessed. A total of 56 water providers are located in the Southwest Arkansas WRPR. The projected water infrastructure gap for the Southwest Arkansas WRPR is estimated to be approximately \$390 million, or approximately 7 percent of the identified total state infrastructure need. The Southwest Arkansas WRPR had 56 surveys submitted, which represents 39 percent of water providers in the region.

Table 6-28. Southwest Arkansas WRPR Water Demand by Region, including Thermoelectric Power Withdrawals (AFY)

With or Without Crop Irrigation?	Base Period	2020	2030	2040	2050
With Crop Irrigation	225,120	222,880	220,640	218,400	217,280
Without Crop Irrigation	178,080	183,680	174,720	164,640	157,920

Table 6-29. Southwest Arkansas WRPR Summary of 2050 Supply Gap by Major Basin Assuming Sustainable Pumping Under Dry Climatic Conditions

onaci bi y cimiado conaciono							
Major Basin Name	Major Basin Area (sq. mi.)	Major Basin Area within Planning Region (sq. mi.)	Percent of Major Basin within Planning Region ¹	Groundwater Supply Gap (AFY)	Groundwater Source Supply Gap w/Excess Surface Water (AFY)	Combined Source Supply Gap w/Total Available Surface Water (AFY)	
Red River	4,440	4,439	100%	70,115	1,151,551	4,816,548	

Instances where less than one percent of major basin was within a planning region were omitted from this table.

REGIONAL STATISTICS

217,280	AFY
3,642	AFY
(70,219)	AFY
1,221,666	AFY
4,886,664	AFY
	3,642 (70,219) 1,221,666

- Based on dry climatic conditions and sustainbly pumped aquifers for areas within MERAS model area
- ⁽³⁾ Based on dry climatic conditions and sustainbly pumped aquifers for areas within MERAS model area, otherwise gap was estimated to equal projected growth in groundwater demand
- (ii) Based on hydrologic analysis of major basins. Excess surface water and total available surface water may not be developed strictly within the planning region

Figure 6-17. Southwest Arkansas WRPR Regional Watershed Statistics

7 References

J.C.Adamski, Radium and Radon in Ground Water of the Ozark Region in Arkansas, Kansas, Missouri, and Oklahoma: U.S. Geological Survey Fact Sheet 181-96, 1 page sheet (1996).

Arkansas Department of Environmental Quality, Biennial Assessment 57, 68 (2008).

Water Division, Arkansas Department of Environmental Quality, Integrated Water Quality Monitoring and Assessment Report, 350 (2008).

Arkansas Department of Environmental Quality, List of Impaired Waterbodies, 303(d) List (2008).

D. R. Albin, Water-Resources Reconnaissance of the Ouachita Mountains Arkansas, U.S. Geological Survey Water Supply Paper 1809-J, 14 (1965).

D.R. Albin, M.S. Hines, and J.W. Stephens, *Water* Resources of Jackson and Independence Counties, *Arkansas*, U.S. Geological Survey Water Supply Paper 1839-G, 29 (1967)

Arkansas Game and Fish Commission Arkansas Wildlife Action Plan, 1190 (ed. 2006).

Arkansas Natural Resources Commission, Water Law in Arkansas, 1, 37 (2011).

Arkansas Natural Resources Commission, 2011-2016 Nonpoint Source Pollution Management Plan, X (2011).

Arkansas Natural Resources Commission, Arkansas Groundwater Protection and Management Report, X (2014)

Arkansas Game and Fish Commission, Policies on Land Use Around Arkansas Game and Fish Commission Lakes, 12 (2010).

Arkansas Governor's Commission on Global Warming, Arkansas Governor's Commission on Global Warming: Final Report, 8-3(2008).

Arkansas Soil and Water Conservation Commission, Arkansas State Water Plan, Lakes of Arkansas, 142 (1981). Arkansas Waterways Commission, 2011-2012 Biennial Report, 6 (2013).

Association of Arkansas Counties, http://www.arcounties.org/ (Retrieved October 16, 2013).

M.S. Bedinger, L.F. Emmett, and H.G. Jeffery, Ground-Water Potential of the Alluvium of the Arkansas River Between Little Rock and Fort Smith, Arkansas, U.S. Geological Survey, Water Supply Paper, 1669-L, 29 (1963).

J.V. Brahana, G.J. Gonthier, and L.M. Remsing, Hydrogeologic Data for Boone County, Arkansas, U.S. Geological Survey Open-File Report 91-518, 36 (1991)

J.V. Brahana, V.A. Leidy, J.M. Lindt, and S.A. Hodge, Hydrogeologic Data for Carroll County, Arkansas, U.S. Geological Survey Open-File Report 93-150, 32 (1993).

E. Buckner, *Climate and Weather*, Encyclopedia of Arkansas History and Culture, http://www.encyclopediaofarkansas.net/encyclopedia/entry-detail.aspx?entryID=4579 (last visited March 15, 2013).

W.M. Caplan, Subsurface Geology of Pre-Everton Rocks in Northern Arkansas, Arkansas Geological Commission Information Circular 21, 17 (1960).

D. Carmen, Personal Telephone Correspondence, RE: Cost and Operations of the Grand Prairie Area Demonstration Project (May 2014).

Climate Prediction Center, The 1997 El Nino: Potential Effects in Arkansas - November 1997 to April 1998, http://www.cpc.ncep.noaa.gov/products/analysis monitoring/ensostuff/states/ar.disc.html (last visited May 13, 2013).

R.M. Cordova, *Reconnaissance of the Ground-Water* Resources of the Arkansas Valley Region, U.S. Geological Survey Water Supply Paper 1669-BB, 33 (1963).

J. B. Czarnecki, P. D. Hays, and P. W. McKee., *The Mississippi River Valley Alluvial Aquifer in Arkansas: A Sustainable Water Resource? Fact Sheet FS-041-02*, U.S. Geological Survey, 3 (2002).

- T. G. Dewald and M. V. Olsen, *EPA Reach File: A National Spatial Data Resource. Washington*, *DC*, U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Office of Water, and Office of Research and Development, (1994).
- U.S. Environmental Protection Agency, Arkansas Site Status Summaries. 2013a. http://www.epa.gov/region6/6sf/6sf-ar.htm (last visited July 2013).
- U.S. Environmental Protection Agency, What Are Water Quality Standards? 2012b, http://water.epa.gov/scitech/swguidance/standards/ab out index.cfm (last visited July 2013).
- N.M. Fenneman, Physiography of Eastern United States, McGraw-Hill Book Co., Inc., 714 (1938).
- T. Foti, *The Natural Divisions of Arkansas*, Arkansas Natural Heritage Commission, 6 (2008).
- J. E. Funkhouser, K. Eng, and M. W. Moix, Low-flow Characteristics and Regionalization of Low-flow Characteristics for Selected Streams in Arkansas, Scientific Investigations Report 2008-5065, U.S. Geological Survey, 1 (2008).
- G. Henry, E. D. Vories, M. M. Anders, S. L. Hirsh, M. L. Reba, K. B. Watkins, and J. T. Hardke, *Characterizing Irrigation Water Requirements for Rice Production from the Arkansas Rice Research Verification Program*, University of Arkansas Rice Research and Extension Center, (2013, publication pending).
- J.M. Howard, G.W. Colton, and W. L. (eds.) Prior, Mineral, Fossil-Fuel, and Water Resources of Arkansas, Arkansas Geological Commission Bulletin 24, Arkansas Geological Survey, 91 (1997).

Jane Jones-Shulz, Freshwater Mussels - The Silent Sentinels, Arkansas Natural Heritage Commission Natural News, 3, (September 2009).

- J.M. Kilpatrick and A.H. Ludwig, *Ground-Water* Resources of the Arkansas River Basin in Arkansas, U.S. Geological Survey Open-File Report 88-725, 45 (1990)
- T.M. Kresse, P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeirer, D.A.

- Westerman, and J.M. Blackstock, Aquifers of Arkansas: Protection, Management, and Hydrologic and Geochemical Characteristics of Arkansas' Groundwater Resources, U.S. Geological Survey (In Review, 2013).
- A. G. Lamonds, Water-Resources Reconnaissance of the Ozark Plateaus Province, Northern Arkansas, U.S. Geological Survey Hydrologic Atlas, 383, 2 sheets (1972).
- V.A. Leidy, and E.E. Morris, 1990b. Hydrogeology and Quality of Ground Water in the Boone Formation and Cotter Dolomite in Karst Terrain of Northwestern Boone County, Arkansas, U.S. Geological Survey Water-Resources Investigations Report 90-4066, 57 (1990).
- A.H. Ludwig, Flow Duration and Low-flow Characteristics of Selected Arkansas Streams, Water Resources Investigations Report 92-4026, U.S. Geological Survey, 13 (1992).
- H.C. MacDonald, D.L. Zachry, H.C. Jeffus, Northern Arkansas Groundwater Inventory, Arkansas Water Resources Center Pub. No. MSC-26, 186 (1977).
- R.W. Melton, The Regional Geohydrology of the Roubidoux and Gasconade Formations, Arkansas and Missouri, University of Arkansas, Master's Thesis, 160 (1976).

NOAA NCDC, Climate at a Glance, http://www.ncdc.noaa.gov/cag/time-series/global (last visited May 24, 2013).

NOAA NCDC, *Climate of Arkansas*, NOAA National Climatic Data Center, http://hurricane.ncdc.noaa.gov/climatenormals/clim60/states/Clim AR 01.pdf (last visited May 15, 2013).

W.L. Prior, J.M. Howard, J.D. McFarland, and S.S. Hill, Roubidoux Formation and Gunter Sandstone Member of the Gasconade Formation, Major Aquifers in Northern Arkansas, Arkansas Geological Commission, Water Resources Circular No. 17, 45 (1999).

Ramsar Convention, Ramsar Sites Information Service, http://ramsar.wetlands.org/Database/SearchforRamsarsites/tabid/765/Default.aspx (last visited June 28, 2013)

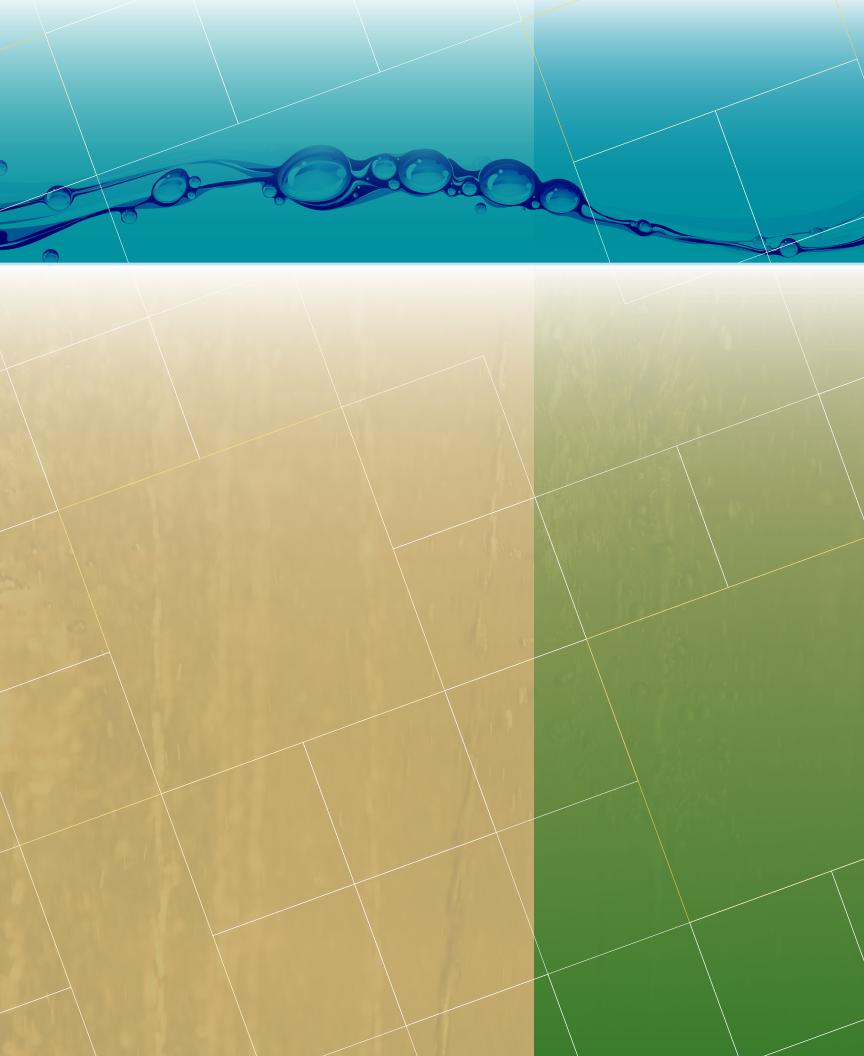
Henry W. Robison, and Thomas M. Buchanan, *Fishes of Arkansas*, University of Arkansas Press, xxi (1988).

B.A. Stein, States of the Union: Ranking America's Biodiversity, NatureServe, 27 (2002).

R. Todd, et al., *State of the Ground Water Report*, U.S. Environmental Protection Agency, Region 6, A-4 (2009).

U.S. Census Bureau, "Table H-8," Median Household Income by State, Historical Income Tables: Households, U.S. Department of Commerce, U.S. Census Bureau (2012).

U.S. Geological Survey, Completed National Hydrography Dataset (NHD), Surface Water, http://nhdftp.usgs.gov/DataSets/Staged/States/FileGDB/HighResolution/NHDH AR 931v210.zip (last visited October 19, 2013).


United States Department of Agriculture: Natural Resources Conservation Service, Completed Irrigation Projects,

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/ar/water/?cid=nrcs142p2 034918 (last visited May 21, 2014).

Brian K. Wagner, *Crustaccans*, The Encyclopedia of Arkansas History and Culture, http://www.encyclopediaofarkansas.net/encyclopedia/entry-detail.aspx?entryID=6596 (last visited October 2013).

A. J. Woods, et al., *Ecoregions of Arkansas (color poster with map, descriptive text, summary tables, and photographs)*, U.S. Geological Survey, poster (2004).

